In this work, plasma parameters such as (electron temperature (Te), electron density (ne), plasma frequency (fp) and Debye length (λD)) were studied using spectral analysis techniques. The spectrum of the plasma was recorded with different energy values, SnO2 and ZnO anesthetized at a different ratio (X = 0.2, 0.4 and 0.6) were recorded. Spectral study of this mixing in the air. The results showed electron density and electron temperature increase in zinc oxide: tin oxide alloy targets. It was located that The intensity of the lines increases in different laser peak powers when the laser peak power increases and then decreases when the force continues to increase.
Cadmium oxide thin films were prepared by D.C magnetron plasma sputtering using different voltages (700, 800, 900, 1000, 1100 and 1200) Volt. The Cadmium oxide structural properties using XRD analysis for just a voltage of 1200 volt at room temperature after annealing in different temperatures (523 and 623) K were studied .The results show that the films prepared at room temperature have some peaks belong to cadmium element along the directions (002), (100), (102) and (103) while the other peaks along the directions of (111), (200) and (222) belong to cadmium oxide. Annealed samples display only cadmium oxide peaks. Also, the spectroscopic properties of plasma diagnostic for CdO thin films were determined and the results show that the el
... Show MoreSnO2 thin films of different two thicknesses were prepared an glass substrate by DC magnetron sputtering. The crystal structure and orientation of the films were investigated by XRD patterns. All the deposited films are polycrystalline. The grain size was calculated as 25.35, 28.8 nm. Morphological and compositions of the films were performed by SEM and EDX analyses respectively. The films appeared compact and rougher surface in nature. The allowed direct band gap was evaluated as 3.85 eV, and other optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielectric constants were determined from transmittance spectrum in the wavelength range (300-900) nm and also analyzed.
Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreThis study aims to analyze the spectral properties of plasma produced from rice husk(Rh) using the laser breakdown spectroscopy (LIBS) method. The plasma generation process used the fundamental harmonic (1064 nm) of a Q-switched Nd:YAG laser. Yttrium aluminum garnet (YAG) is a man-made crystalline material. The laser fired pulses with a duration of 10 ns and a repetition rate of 6 Hz. Thus, the energy outputs achieved were 50–200 mJ at the wavelength of 1064 (nm). The silica content in the rice hulls was verified using an XRF measurement, which revealed the presence of silica in the rice hulls in a high percentage. Precise beam focusing was achieved by focusing the laser on the target material. This target material is placed with
... Show MoreSpin coating technique has been applied in this work to prepared Xerogel films doped with Rhodamine 6G laser dyes. The solid host of laser dye modifies its spectroscopic properties with respect to liquid host. During the spin coating process the dye molecules suffer from changing their environment. The effects of three parameters were studied here: the spinning speed, multilayer coating and formaldehyde addition
In this work the diode planer magnetron sputtering device was
designed and fabricated. This device consists of two aluminum discs
(8cm) diameter and (5mm) thick. The distance between the two
electrodes is 2cm, 3cm, 4cm and 5cm.
Design and construction a double probe of tungsten wire with
(0.1mm) diameter and (1.2mm) length has been done to investigate
electron temperature, electron and ion density under different
distances between cathode and anode. The probes were situated in
the center of plasma between anode and cathode.
The results of this work show that, when the distance between
cathode and anode increased, the electron temperature decreased.
Also, the electron density increases with the increasing
Z-scan has been utilized for studying the non-linear properties and optical limiting behaviors of the dye Copper Phthalocyanine thin films. The refractive index is negative, which indicates a self-defocusing behavior and non-linear absorption coefficient (