Nanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption spectrum shows peaks at 450 nm- 700 nm µm due to the generation of Cu-NPs.
Excess molar volumes of five ternary mixtures of 2- methoxy ethanol(1) +butyl acetate(2)+benzene(3), +toluene(3), +chlorobenzene(3), +bromobenzene(3), and +nitrobenzene(3) have been measured at 303.15K. The excess molar volume exhibited positive deviation over the entire range of composition in the systems 2-methoxy ethanol(1)+ butyl acetate(2)+ benzene(3),+toluene(3) and sigmoid behavior in the case of the remaining systems. Flory's statistical theory have been extended to predict the excess molar volumes of the five ternary mixtures at 303.15 k over a wide range of composition . An excellent agreement has been found between the experimental and theoretical excess molar volumes , both in magnitude and sign .
Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the
Abstract Objective: Comparison of femtosecond small incision lenticule extraction (FS-SMILE) versus Femtosecond laser Insitu keratomileusis (FS-LASIK) regarding dry eye disease (DED) and corneal sensitivity (CS) after those refractive surgeries. Methods: A comparative prospective study conducted for a period of 2 years; from March 2017 until February, 2019. Enrolled patients were diagnosed with myopia. Fifty patients (100 eyes) were scheduled for bilateral FS-SMILE and the other 50 patients (100 eyes) had been scheduled for bilateral FS-LASIK. Both groups were followed for six months after surgery. The age, gender, and preoperative refraction for both groups were matched. Complete evaluation of dry eye disease had been
... Show MoreAbstract Objective: Comparison of femtosecond small incision lenticule extraction (FS-SMILE) versus Femtosecond laser Insitu keratomileusis (FS-LASIK) regarding dry eye disease (DED) and corneal sensitivity (CS) after those refractive surgeries. Methods: A comparative prospective study conducted for a period of 2 years; from March 2017 until February, 2019. Enrolled patients were diagnosed with myopia. Fifty patients (100 eyes) were scheduled for bilateral FS-SMILE and the other 50 patients (100 eyes) had been scheduled for bilateral FS-LASIK. Both groups were followed for six months after surgery. The age, gender, and preoperative refraction for both groups were matched. Complete evaluation of dry eye disease had been
... Show MorePhase change material (PCM) is considered as one of the most effective thermal energy storage (TES) systems to balance energy supply and demand. A key challenge in designing efficient PCM-based TES systems lies in the enhancement of heat transmission during phase transition. This study numerically examines the privilege of employing twisted-fin arrays inside a shell-and-tube latent heat storage unit to improve the solidification performance. The presence of twisted fins contributes to the dominating role of heat conduction by their curved shapes, which restricts the role of natural convection but largely aids the overall heat-transfer process during solidification. The heat-discharge
Almost all thermal systems utilize some type of heat exchanger. In a lot of cases, evaporators are important for systems like organic Rankine cycle systems. Evaporators give a share in a large portion of the capital cost, and their cost is significantly attached to their size or transfer area. Open-cell metal foams with high porosity are taken into consideration to enhance thermal performance without increase the size of heat exchangers. Numerous researchers have tried to find a representation of the temperature distribution closer to reality due to the different properties between the liquid and solid phases. Evaporation heat transfer in an annular pipe of double pipe heat exchanger (DPHEX) filled with cooper foam is investigated numerical
... Show MoreAbstract
One of the most suitable materials to be used in latent heat thermal energy storage system (LHTES) are Phase change materials, but a problem of slow melting and solidification processes made many researchers focusing on how to improve their thermal properties. This experimental work concerned with the enhancing of thermal conductivity of phase change material. The enhancing method was by the addition of copper Lessing rings in phase change material (paraffin wax). The effect of diameter for the used rings was studied by using two different diameters (0.5 cm and 1cm). Also, three volumetric percentages of rings addition (3%, 6% and 10%) were tested for each diameter. The discharging process was done with
... Show More