Nanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption spectrum shows peaks at 450 nm- 700 nm µm due to the generation of Cu-NPs.
The microstructures of rapidly solidified laser clad layers of laser cladding of Inconel 617 with different nickel-aluminum premixed clad powders are discussed. The effect of different cladding speeds on the microstructures of rapidly solidified laser clad layers is discussed too. The detailed microstructural results showed that different growth mechanisms are produced during rapid solidification. These are planar, cellular, cellular/dendritic and dendritic.
The study is based on the selective binding ability of the drug compound procaine (PRO) on a surface imprinted with nylon 6 (N6) polymer. Physical characterization of the polymer template was performed by X-ray diffraction and DSC thermal analysis. The imprinted polymer showed a high adsorption capacity to trap procaine (237 µg/g) and excellent recognition ability with an imprinted factor equal to 3.2. The method was applied to an extraction column simulating a solid-phase extraction to separate the drug compound in the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate more than the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate of more t
... Show MoreA rapid high performance liquid chromatography method for the determination of sphinganine (Sa) and sphingosine (So) in urine samples by employing a silica-based monolithic column is described. The samples were first extracted using ethyl acetate and derivatized using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol. C20 sphinganine was used as internal standard. Under the optimized conditions, separation was achieved using a mixture of methanol:water (93:7, v/v), column temperature at 30°C, flow rate of 1 mL min−1, and an injection volume of 10 μL. Good linearity was obtained for Sa and So over the concentration range 20–500 ng mL−1(correlation coefficients ≥0.9978). The detection limits were 0.45 ng mL−1 for Sa and
... Show Moreِabstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission) was studied and found to be at 772 nm, several process parameters were such as concentration of TiO2 , and the effect of distance from nozzle tip to the grounded collector (gap distance). The result of the lower concentration of, the smaller the diameter of nanofiber is. Increasing the gap distance will affect nanofibers diameter.
In this research we prepared nanofibers by electrospinning from
poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission)
was studied and found to be at 772 nm, several process parameters
were such as concentration of TiO2 , and the effect of distance from
nozzle tip to the grounded collector (gap distance). The result of the
lower concentration of, the smaller the diameter of nanofiber is.
Increasing the gap distance will affect nanofibers diameter
Background. Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS),
... Show MoreIn this study, low cost biosorbent ̶inactive biomass (IB) granules (dp=0.433mm) taken from drying beds of Al-Rustomia Wastewater Treatment Plant, Baghdad-Iraq were used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physico-chemical parameters such as initial metal ion concentration (50 to 200 mg/l), equilibrium time (0-180 min), pH (2-9), agitation speed (50-200 rpm), particles size (0.433 mm), and adsorbent dosage (0.05-1 g/100 ml) were studied. Six mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich–Peterson, Sips, Khan, and Toth models. The best fit to the P
... Show MoreA new tridentate ligand has been synthesized derived from phenyl(pyridin-3-yl)methanone. Three coordinated metal complexes were prepared by complexation of the new ligand with Cu(II), Ni(II) and Zn(II) metal salts. The new Schiff base “benzyl -2-[phenyl(pyridin-3-yl)methylidene]hydrazinecarbodithioate” and the new metal complexes were characterized using various physico-chemical and spectroscopic techniques. From the analysis results, the expected structure to the metal complexes are octahedral in geometry for Cu(II) complex, square planner for Ni(II) and tetrahedral for Zn(II) complex. The new compounds are expected to show strong bioactivity against bacteria and cancer cells.