Nanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption spectrum shows peaks at 450 nm- 700 nm µm due to the generation of Cu-NPs.
Aqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.
This investigation is a study of the length of time where drops can exist at an oil-water interface before coalescence take place with a bulk of the same phase as the drops. Many factors affecting the time of coalescence were studied in is investigation which included: dispersed phase flow rate, continuous phase height, hole size in distributor, density difference between phases, and viscosity ratio of oil/water systems, employing three liquid/liquid systems; kerosene/water, gasoil/water, and hexane/water. Higher value of coalescence time was 8.26 s at 0.7ml/ s flow rate, 30cm height and 7mm diameter of hole for gas oil/water system, and lower value was 0.5s at 0.3ml/s flow rate, 10 cm height and 3mm diameter of hole for hexane
... Show MoreThe objective of the present investigation was to enhance the solubility of practically insoluble mirtazapine by preparing nanosuspension, prepared by using solvent anti solvent technology. Mirtazapine is practically insoluble in water which act as antidepressant .It was prepared as nano particles in order to improve its solubility and dissolution rate. Twenty formulas were prepared and different stabilizing agents were used with different concentrations such as poly vinyl pyrrolidone (PVPK-90), poly vinyl alcohol (PVA), poloxamer 188 and poloxamer 407. The ratios of drug to stabilizers used to prepare the nanoparticles were 1: 1 and 1:2. The prepared nanoparticles were evaluated for
... Show MoreTitanium dioxide nanorods have been prepared by sol-gel template
method. The structural and surface morphology of the TiO2 nanorods was
investigated by X-ray diffraction (XRD) and atomic force microscopy
(AFM), it was found that the nanorods produced were anatase TiO2 phase.
The photocatalytic activity of the TiO2 nanorods was evaluated by the
photo degradation of methyl orange (MO). The relatively higher
degradation efficiency for MO (D%=78.2) was obtained after 6h of exposed
to UV irradiation.
A novel technique for nanoparticles with a chemical method and impact for resistance bacteria methicillin-resistant Staphylococcus aureus (MRSA), UV-visible analysis confirmed the by Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray (EDX), Scanning electron microscope (SEM) and X-ray diffraction pattern estimation antimicrobial excellent antibacterial activity against MRSA (with zone of inhibition of 11 ± 02 mm , 9 ± 01 mm,8 ± 03 mm and 7.5 ± 02 mm and 6.5 ± 02 mm) at different concentrations (0.5 ,0.25, 0.125, 0.0625, 0.03125) mg/ml while good activity was 16 ± 03 mm at 17 ± 02 mm zone at 0.25, 0.125 mg/mL, respectively. The increase in microorganism resistance to antibiotics a couple of have caused
... Show MoreAcetophenone sulfamethoxazole and 3-Nitrobenzophenone sulfamethoxazole were prepared from the reaction of sulfamethoxazole with two ketones. The prepared ligands were identified by (C.H.N) analysis and UV-VIS, FT-IR spectroscopic techniques. Metal complexes of the two ligands were prepared in an aqueous alcohol with Zn (II), Mn (II) and Cu (II) ions with a molar ratio1:1. The proposed general formula for the resulting complexes was [ML.CL2.H2O]H2O .The complexes were characterized by (C.H.N) technique , spectroscopic methods ,conductivity, atomic absorption ,magnetic susceptibility measurements and melting point. According to the results obtained, the suggested geometry is to be octahedral for all the complexes.
The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show MoreThe effect of operating parameters on the batch scale separation of hydrocarbon mixture (benzene and hexane) using
emulsion liquid membrane technique is reported. Sparkleen detergent was used as surfactant and heavy mineral oil as
solvent to receive the permeates.
From the experimental results, the parameters that influenced the permeation are, composition of feed, contact time
with solvent, ratio of volume of solvent to volume of hydrocarbon feed, ratio of volume of surfactant solution to volume
of hydrocarbon feed, surfactant concentration, mixing intensity and glycerol as polar additive in the surfactant solution
to eliminate drop breakup.
The best conditions for the separation in this study were found to be: comp