The present work studies the mechanical properties of SiO2 μPs, and NPs in St/PVA blends. The samples were prepared by casting method as PVA, St/PVA blends at different concentrations (30, 40, 50, and 60 %). DSC and TGA tests were carried out to the samples evolved. The result showed a single glass transition temperature (Tg) for all St /PVA blends that was attributed to the good miscibility of the blends involved. It was found that (Tg) decrease with starch ratio increase. It was seen that (PVA) of (Tg=105 oC); The glass transition temperature which was decrease with starch ratio that was attributed to glass transition relaxation process due to micro-Brownian motion of the main chain back bond. The endothermic peak at 200 oC was attributed to melting point of (PVA). Thermal properties of PVA; and St /PVA blends at different concentration (30, 40, 50, and 60 %) were evaluated by thermo gravimetric analysis (TGA). The analyses were carried out from 20 to 600 oC at 10 oC)/min heating rate in air oxygen atmosphere. The weight loss stages depended on polymer system. The starch addition causing shifting in the second degradation temperature to the higher temperature; which result in overlapping between the two main degradation steps, these result was attributed to the St/ PVA blend compatibility. The mechanical properties results showed a decrease in ultimate strength with starch ratio increase. The ultimate strength of (PVA) was (47 MPa), whereas the ultimate strength of 60 %St/PVA was (11 MPa) and for 30 %St/PVA was the highest ultimate strength of blends involved (26 MPa). SiO2μPs (753.7 nm), and NPs (263.1 nm) were added at different concentrations (1.5, 2, and 2.5 %). 1.5% SiO2μPs, and NPs of the best ultimate strength (69 MPa), (86 MPa) respectively then it was decreased by SiO2μPs, and NPs increase. Optical microscope of the samples involved was investigated. It was concluded the prepared samples were suggested to be used as packaging materials for agriculture application and its ultimate strength could be controlled by SiO2μPs, and NPs addition.
In this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreConventional flexible pavements are released to different types of failure in the initial phases of their service life due to high traffic density, high speeds, heavy loads, and harsh climates. To eliminate pavement damage and failure early, the present search investigates the impact of adding glass, steel, and basalt fibers in the asphalt mixtures. Also, the study evaluates these materials characteristics compared to the mixtures without fibers. The Marshall test and tensile strength ratio test (TSR) were utilized to evaluate the asphalt mixture's performance. A set of specimens were produced by incorporating glass fiber (GF), steel fiber (SF), and basalt fiber (BF) at (0.10%, 0.15%, 0.20%), (0.25%, 0.35%, 0.45%), and (0.15%, 0.35%
... Show MoreDate palm fiber is one of the common wastes available in the M. E. countries essentially Iraq. The aim of search to investigate the performance and effects of fiber date palm on the mechanical properties of high strength concrete, this fiber was used in three ratio 2, 4 and 6 % by vol. of concrete at ages of (7, 28, 90) days. Results demonstrated improvement in the compressive strength increased 19.2 %, 23.6%, 24.9 % for 2%, 4%, 6% of fiber respectively at age 28 days. Flexural strength increases 47.6%, 66.2%, 93.8% form (2,4,6) % of fiber respectively at age 28 days. Density increase about 0.41%, 0, 61 % 0.69 % for (2,4,6) % of fiber respectively at age 28. Absorption water decrease
This study was conducted in a laboratory experiment at the University of Baghdad, College of Science, computing Department, 5 km from the center of Baghdad city, in 2021 to evaluate the sorting method for the tomato crop. The experiments were conducted in a factorial experiment under a complete randomized design with three replications and using SAS analysis, artificial neural network, image processing, the study of external characteristics, and physical features; fruit surface area and fruit circumference were 1334.46 cm2,57.53 cm2 and free diseases. The error value was less than zero, while training with outputs recorded the highest value and which was 5. The neural network's performance between the input and the mean square of th
... Show MoreABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.
The present work shows a theoretical results that have been used the functional Hybrid of three parameters Lee-Yang-Parr (B3LYP) of the quantum mechanical approach for density functional theory with (Spanish Initiative for Electronic Simulations with Thousands of Atoms) SIESTA code. All calculations were carried out employing the used method at the Gaussian 09 package of programs. It was reported the main point for research on dominance of the bandgap of elongated pi-conjugated molecules by using different chemical groups replacing hydrogen atom in the most molecules that used in this work. The side groups creates another factor that controls the value of the band gap. The dihedral angle between the two pheny
... Show MoreObjective Advantageous properties of silicone elastomer made it one of the favorable materials in maxillofacial prosthesis construction, but these properties may change after months of usage or after pigments addition. This study aimed to define the optimum concentration for a mixture of two types of intrinsic pigments that added to VST-50 maxillofacial silicone material and study their effects on mechanical properties before and after artificial aging. Methods After the pilot study was conducted, 0.1% by weight of rayon flocking and 0. 2% by weight of burnt sienna intrinsic pigment concentration was selected because of improvement in tested mechanical properties of VST-50 maxillofacial silicone. A total of one hundred and eighty samples we
... Show MoreWith the advancement of modern radiotherapy technology, radiation dose and dose distribution have significantly improved. as part of Natural development, interest has recently been renewed by treatment, especially in the use of heavy charged particles, because these radiation types serve theoretical advantages in all biological and physical aspects. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with Bone Tissue were calculated by using Zeigler’s formula and SRIM software, also the Range for this particle were calculated by using Mat lab language for (0.01-1000) MeV alpha energy.