The present work studies the mechanical properties of SiO2 μPs, and NPs in St/PVA blends. The samples were prepared by casting method as PVA, St/PVA blends at different concentrations (30, 40, 50, and 60 %). DSC and TGA tests were carried out to the samples evolved. The result showed a single glass transition temperature (Tg) for all St /PVA blends that was attributed to the good miscibility of the blends involved. It was found that (Tg) decrease with starch ratio increase. It was seen that (PVA) of (Tg=105 oC); The glass transition temperature which was decrease with starch ratio that was attributed to glass transition relaxation process due to micro-Brownian motion of the main chain back bond. The endothermic peak at 200 oC was attributed to melting point of (PVA). Thermal properties of PVA; and St /PVA blends at different concentration (30, 40, 50, and 60 %) were evaluated by thermo gravimetric analysis (TGA). The analyses were carried out from 20 to 600 oC at 10 oC)/min heating rate in air oxygen atmosphere. The weight loss stages depended on polymer system. The starch addition causing shifting in the second degradation temperature to the higher temperature; which result in overlapping between the two main degradation steps, these result was attributed to the St/ PVA blend compatibility. The mechanical properties results showed a decrease in ultimate strength with starch ratio increase. The ultimate strength of (PVA) was (47 MPa), whereas the ultimate strength of 60 %St/PVA was (11 MPa) and for 30 %St/PVA was the highest ultimate strength of blends involved (26 MPa). SiO2μPs (753.7 nm), and NPs (263.1 nm) were added at different concentrations (1.5, 2, and 2.5 %). 1.5% SiO2μPs, and NPs of the best ultimate strength (69 MPa), (86 MPa) respectively then it was decreased by SiO2μPs, and NPs increase. Optical microscope of the samples involved was investigated. It was concluded the prepared samples were suggested to be used as packaging materials for agriculture application and its ultimate strength could be controlled by SiO2μPs, and NPs addition.
In this paper, three tool paths strategies; iso-planar, helical and adaptive have been implemented to investigates their effect on the mechanical properties of Brass 65-35 formed by single point incremental sheet metal forming process. To response this task, a fully digital integrated system from CAD modeling to finished part (CAD/CAM) for SPIF process has been developed in this paper.
The photo-micrographs shows an identical grain formation due to the plastic deformation of the incremental forming process, change in the grain shape and size was observed. It's found that the adaptive tool path play a significant role to increase the hardness of the formed specimen from (48 to 90 HV) and the grain texture of the formed specimen found a
Background: The most widely used material for fabrication of denture base is poly methyl methacrylate, despite its popularity, the main problems associated with it as a denture base material are poor strength particularly under fatigue failure inside the patient mouth, impact failure outside the patient mouth, which are the main causes for fracture of denture, several studies was done to increase mechanical properties of denture base. The present study was conducted to evaluate and compare the effect of addition single walled carbon nanotubes in different concentrations to polymethyl methacrylate on some mechanical properties (surface hardness, surface roughness, impact strength and transverse strength). Materials and methods: Forty eight
... Show MoreThe aim of this work is to produce samples from Iraqi raw materials like Husyniat Bauxite (raw and burnt) and to study the effect of some additives like white Doekhla kaolin clays and alumina on that material properties were using sodium silica as a binding material. Five mixtures were prepared from Bauxite (raw and burnt) and kaolin clays, with an additive of (40) ml from sodium silica and alumina of (2.5, 5, 7.5,10 wt %) percentage as a binding material. the size grading was through sieving. The formation of all specimens was conducted by a measured gradually semi-dry pressing method under a compression force of (10) Tons and humidity ratio ranging from (5-10) % from mixture weight. Drying all specimens was done and then they were burn
... Show MoreThe creation and characterisation of biodegradable blend films based on chitosan and polyvinyl alcohol for application in a range of packaging is described. The compatibility between the chitosan and PVA polymers was good. Composite films had a compact and homogeneous structure, according to the morphology analysis. The mechanical test result of PVA/CH at concentrations 5% showed, that The higher values of TS recorded in sample (p1, with 40 MPa) while the lower values appeared in sample (p9, with 22.09 MPa), the TS decreased gradually as the amount of PVA increased in blend film. While the blend film of pure Chitosan exhibits a poor mechanical strength which makes it a poor candidate for packaging but Blending CH with PVA together improved
... Show MoreDespite widespread agreement on the beneficial nature of hydrated lime (HL) addition to asphalt concrete mixes, understanding of the effect of HL particle size is still limited. Previous investigations have focused mainly on two different size comparisons, and so certain guidance for a practical application cannot yet be produced. This study investigates three distinct sizes of HL, in the range of regular, nano, and sub-nano scales, for their effects on the properties of modified asphalt concretes. Five different percentages of HL as a partial replacement of ordinary limestone filler in asphalt concrete mixes were studied for wearing course application purposes. Experimental tests were conducted to evaluate the mechanical properties
... Show MoreIn this article, the casting method was used to prepare poly(methyl methacrylate)/hydroxyapatite (PMMA/HA) nanocomposite films incorporated with different contents (0.5, 1, and 1.5 wt%) of graphene nanoplatelets (Gnp). The chemical properties and surface morphology of the PMMA/HA blend and PMMA/HA/Gnp nanocomposite were characterized using FTIR, and SEM analysis. Besides, the thermal conductivity, dielectric and electrical properties at (1–107 Hz) of the PMMA/HA blend and PMMA/HA/Gnp composites were investigated. The structural analysis showed that the synthesized composites had a low agglomerated state, with multiple wrinkles of graphene flakes in the PMMA/HA blend. The thermal conductivity was improved by more than 35-fold its value for
... Show MoreIn this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength
... Show More