In this work, plasma parameters such as, the electron temperature )Te(, electron density ne, plasma frequency )fp(, Debye length )λD(
and Debye number )ND), have been studied using optical emission spectroscopy technique. The spectrum of plasma with different values of energy, Pb doped CuO at different percentage (X=0.6, 0.7, 0.8) were recorded. The spectroscopic study for these mixing under vacuum with pressure down to P=2.5×10-2 mbar. The results of electron temperature for X=0.6 range (1.072-1.166) eV, for X=0.7 the Te range (1.024-0.855) eV and X=0.8 the Te is (1.033-0.921) eV. Optical properties of CuO:Pb thin films were determined through the optical transmission method using ultraviolet visible spectrophotometer within the range (190 – 1100) nm.
The dependence of the energy losses or the stopping power for the energies and the related penetrating factor are arrive by using a theoretical approximation models. in this work we reach a compatible agreement between our results and the corresponding experimental results.
Objectives: This study aimed to evaluate and compare the effect of plasma treatment versus conventional treatment on the micro shear bond strength (μSBS), surface roughness, and wettability of three different CAD/CAM materials. Materials and methods: Sixty cylindrical specimens (5 mm diameter ×3 mm height) were prepared from three different CAD/CAM materials: Group A: Zirconia, Group B: Lithium disilicate, and Group C: Resin nano-ceramic. Each group was subdivided into two subgroups according to surface treatment used: Subgroup I: Conventional treatment, zirconia was sandblasted with Al2O3, while lithium disilicate and resin nano-ceramic were etched with hydrofluoric acid. Subgroup II: Plasma treatment, the surface of each material was tr
... Show More
Abstract
Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t
... Show MoreThis search includes the preparation of Schiff base ligand (SB) from condensation primary amine with vanillin. The new ligand was diagnosed by spectroscopic methods as Mass, NMR, CHN and FTIR. Ligand complexes were mixed from new (SB) and Anthranillic acid (A) with five metal (II) chlorides. The preparation and diagnosis were conducted by FTIR, CHN, UV-visible, molar conductivity, atomic absorption and magnetic moment. The octahedral geometrical shape of the complexes was proposed. The ligands and their new complexes were screened with two different types of bacteria.
A fast laser texturing technique has been utilized to produce micro/nano surface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.
The current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning el
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreAg nanoparticles were prepared using Nd:YAG laser from Ag matel in distilled water using different energies laser (100 and 600) mJ using 200 pulses, and study the effect of the preparation conditions on the structural characteristics of and then study the effect of nanoparticles on the rate of killing the two types of bacteria particles (Staph and E.coli). The goal is to prepare the nanoparticle effectively used to kill bacteria.
In this paper, we propose a new and efficient ferroelectric nanostructure metal oxide lithium niobate [(Li1.075Nb0.625Ti0.45O3), (LNTO)] solid film as a saturable absorber (SA) for modulating passive Q-switched erbium-doped fiber laser (EDFL). The SA is fabricated as a nanocomposite solid film by the drop-casting process in which the LNTO is planted within polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] as host copolymer. The optical and physical characteristics of the solid film are experimentally established. The SA is incorporated within the cavity of EDFL to examine its capability for producing multi-wavelength laser. The experimental results proved that a multi-wavelength laser is produced, where stable four lines with central
... Show MoreIn this paper, we investigate the basic characteristics of "magnetron sputtering plasma" using the target V2O5. The "magnetron sputtering plasma" is produced using "radio frequency (RF)" power supply and Argon gas. The intensity of the light emission from atoms and radicals in the plasma measured by using "optical emission spectrophotometer", and the appeared peaks in all patterns match the standard lines from NIST database and employed are to estimate the plasma parameters, of computes electron temperature and the electrons density. The characteristics of V2O5 sputtering plasma at multiple discharge provisos are studied at the "radio frequency" (RF) power ranging from 75 - 150 Wat
... Show More