PMMA films of different thickness (0.006, 0.0105, 0.0206, 0.0385 and 0.056cm) were synthesized by casting process. The temperature and frequency dependence of dielectric constant and AC electrical conductivity measurements at various frequencies (10kHz-10MHz) and temperatures (293-373K) were carried out. Few anomalies in dielectric studies were observed near 313 and 373 K respectively. These points were related to glass transitions temperature. The variation of activation energy and conduction behavior was studied .From the AC conduction studies, it is confirmed that the mechanism responsible for the conduction process is hopping of carriers. The variations of the dielectric constant and loss as function of frequency at different temperature was observed and the results were discussed. The calculated activation energy varied with the thickness, temperature, and applied frequency. Conductivity plots against frequency suggested that the response obeying the universal power law concerning the AC conductivity and dielectric behavior of polymer. The polarizability a increases with temperature but decreases with thickness indicating weekends and rising of intermolecular forces respectively.
Flexible pipes, such as GRP pipes, serve as effective underground infrastructure especially as sewer pipeline. This study is an attempt for understanding the effects of bedding types on the behavior of large diameter GRP flexible sewer pipes using three dimensional finite element approaches. Theoretical and numerical analyses were performed using both BS EN 1295-1 approach and finite element method (ABAQUS software). The effects of different parameters are studied such as, depth of backfill, bedding compaction, and backfill compaction. Due to compaction, an increase in the bedding compaction modulus (E’1) results in a reduction of both stresses and displacements of the pipe, especially, for well compacted ba
... Show MoreThe dispersion relation of linear quantum ion acoustic waves is derivate according to a fluid approach that depends on the kinetic description of the systems of charged particles model. We discussed the dispersion relation by changing its parameters and graphically represented. We found through graphs that there is full agreement with previous studies on the subject of interest. That motivates us to discuss the dispersion relation of waves depending on the original basic parameters that implicitly involved in the relationship which change the relationship by one way or another, such as electron Fermi temperature and the density at equilibrium state.
Over the last few decades, fiber reinforced polymer (FRP) has been increasingly used in strengthening different structural concrete members. The main objective of this research is to study the influence of curvature on the performance of curved soffit reinforced concrete (RC) bridge girders that have been strengthened with carbon fiber reinforced polymers (CFRP). This experimental program was designed to evaluate the effect of concavity and soffit curvature on the CFRP laminate utilization and load capacity, compared to flat soffit RC beams strengthened with the same CFRP system. Accordingly, five beams, 2.7 m in length and having the same degree of soffit curvature (20 mm per 1 meter
This study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.
... Show MoreIn this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), sizestrain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.454077
... Show MoreI
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreModified optical fiber sensors received increasing attention because of their superior properties over electrical sensors. These properties include their immunity towards electromagnetic interference and the ability to be deployed in corrosive and volatile environment. Several optical fiber platforms have been developed for chemical sensing applications based on modifying optical fiber cladding layer such as etched, tapered, D-shaped and etched-tapered. The modifications purpose is to extend the evanescent wave propagating out of the core physical dimensions. Thus, evanescent wave interaction with analyte is enhanced. Modified optical transducing platforms are integrated in gas sensing applications, such as ammonia. Modified optical
... Show MorePolyaniline films were successfully synthesized in this study using an oxidative polymerization method at temperatures ranging from 0 to 4 ° C. Polyaniline films were deposited using a single step of chemical oxidative polymerization rather than electrochemical polymerization. The polyaniline was examined using FTIR, XRD, SEM, AFM, and Four Point Probe. This result demonstrates that polyaniline synthesized using this method has a uniform morphology, small size (17 to 40) nm, high crystallinity, and high conductivity (9.42 s/cm).
Effect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
