Ferrite with the general formula CuLayFe2-yO4 (where y=0.02, 0.04, 0.06, 0.08 and 0.1), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns with the appearance of small amount of secondary phases. The lattice parameter results were 8.285-8.348 Å. X-ray density increased with La addition and showed values between 5.5826 – 5.7461gm/cm3. The Atomic Force Microscopy (AFM) showed that the average grain size was decreasing with the increase in La concentration. The Hall coefficient was found to be positive. It demonstrates that the majority of charge carriers of p-type, suggesting that the mechanism of conduction is predominantly caused by hopping of holes. The resistivity was noticed to increase with the increase in La substitution. The activation energy Eav decreased with the frequency increase. The AC conductivity was found to increase with the frequency and La addition. Dielectric constant was noticed to decrease with frequency and La addition. The dielectric loss factor decreased with La content because rare earths are known as low dielectric loss materials. |
In this study, the four tests employed for non-linear dependence which is Engle (1982), McLeod &Li (1983), Tsay (1986), and Hinich & Patterson (1995). To test the null hypothesis that the time series is a serially independent and identical distribution process .The linear structure is removed from the data which is represent the sales of State Company for Electrical Industries, through a pre-whitening model, AR (p) model .From The results for tests to the data is not so clear.
In this research the electrical conductivity measurements were made on the amorphous InAs films prepared by thermal evaporation method in thickness 450 nm and annealed in different temperatures in the range (303- 573) K. The electrical conductivity (σ) showed a decreasing trend with the increasing annealing temperature, while the activation energies (Ea1, Ea2) showed an opposite trend, where the activation energies are increased with the annealing temperature.
The first aim in this paper is to introduce the definition of fuzzy absolute value on the vector space of all real numbers then basic properties of this space are investigated. The second aim is to prove some properties that finite dimensional fuzzy normed space have.
This work aims to fabricate two types of plasmonic nanostructures by electrical exploding wire (EEW) technique and study the effects of the different morphologies of these nanostructures on the absorption spectra and Surface-Enhanced Raman Scattering (SERS) activities, using Rhodamine 6G as a probe molecule. The structural properties of these nanostructures were examined using X-Ray diffraction (XRD). The morphological properties were examined using field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (STEM). The absorption spectra of the mixed R6G laser dye (concentration 1×10-6 M) with prepared nanostructures were examined by double beam UV-Vis Spectrophotometer. The Raman spe
... Show MoreSeismic instantaneous phase attribute was applied for conventional seismic interpretation (structural interpretation) on 3D seismic cube of 1914.72km² of Samawa-Diwan area, located in the south part of Iraq within Muthna governorate. Instantaneous phase section is very important to detect structural and stratigraphic features. Six reflectors represent Upper Jurassic and Cretaceous formations were defined from synthetic seismogram of wells in study area, then picked over seismic cube. Fault boundaries maps for each horizon were drawn depending on horizon contacts then fault planes were constructed. Finally, a 3D structural model was constructed in time domain, then converted to depth domain by using 3D average velocity model. Structurall
... Show MoreElectrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non‐invasive techniques can save time, costs, and efforts in archaeological prospection and yield detailed images of subsurface anomalies. We present the results of quasi‐three‐dimensional (3D) ERT measurements in an area of a presumed Roman construction, using a dense electrode network of parallel and orthogonal profiles in dipole–dipole configuration. A roll‐along technique has been utilized to cover a large part of the archaeological site with a 25 cm electrode and profile spacing, respectively. We have designed a new field proce
In this work, we presented a study of the structural formula for a new series of complexes with Ag(I), Cu(II), Zn(II), and Cd(II) derived from the guanine azo dye ligand 2-amino-8-((3-hydroxyphenyl)diazinyl)-1,7-dihydro-6H-purin-6-one (HAG), which is investigated using various physicochemical analyses, spectroscopic techniques (FT-IR, U.V-VIS, and 1H NMR), thermogravimetric analysis (TGA). In addition, elemental analyses, magnetic susceptibility, and molar conductance measurements were all stabilized. As well as the mole ratio, stability constant, and Gibbs free energy were studied for all complexes, where they showed high stability and spontaneous synthesis. The Cu(II) complex was suggested to have octahedral stere
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
Abstract
In this work, pure Polypyrrole (PPy) and Polypyrrole (PPy)/Graphene (GN) was synthesized by in-situ polymerization in different weight percentages (0.1, 0.3, 0.5, 1, 3 and 5 wt.% (g)) of GN nano particles using chemical oxidation method at room temperature. The FTIR, SEM and electrical properties were studies for the nano composites. The result show that when concentration of GN Nano particle increase, the electrical conductivity increased and the graphene sheets were merging to form a continuous area of the GN through the polypyrrole base material. The FTIR spectra shows that the characteristics absorption peaks of polypyrrole that is, 1546.80, 1463.87 and 3400.27 cm-1(stretching vibration in the pyrrol
... Show More