The quadrupole moment of 14B exotic nucleus has been calculated using configuration mixing shell model with limiting number of orbital's in the model space. The core- polarization effects, are included through a microscopic theory which considers a particle-hole excitations from the core and the model space orbits into the higher orbits with 6ħω excitations using M3Y interaction. The simple harmonic oscillator potential is used to generate the single particle wave functions. Large basis no-core shell model with (0+2)ћω truncation is used for 14B nucleus. The effective charges for the protons and neutrons were calculated successfully and the theoretical quadrupole moment was compared with the experimental data, which was found to be in a good agreement. |
<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become con
... Show MoreIn an earlier paper, the basic analytical formula for particle-hole nuclear state densities was derived for non-Equidistant Spacing Model (non-ESM) approach. In this paper, an extension of the former equation was made to include pairing. Also a suggestion was made to derive the exact formula for the particle-hole state densities that depends exactly on Fermi energy and nuclear binding energies. The results indicated that the effects of pairing reduce the state density values, with similar dependence in the ESM system but with less strength. The results of the suggested exact formula indicated some modification from earlier non-ESM approximate treatment, on the cost of more calculation time
The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing m
... Show MoreIn this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.
A reliability system of the multi-component stress-strength model R(s,k) will be considered in the present paper ,when the stress and strength are independent and non-identically distribution have the Exponentiated Family Distribution(FED) with the unknown shape parameter α and known scale parameter λ equal to two and parameter θ equal to three. Different estimation methods of R(s,k) were introduced corresponding to Maximum likelihood and Shrinkage estimators. Comparisons among the suggested estimators were prepared depending on simulation established on mean squared error (MSE) criteria.
In this paper, we estimate the survival function for the patients of lung cancer using different nonparametric estimation methods depending on sample from complete real data which describe the duration of survivor for patients who suffer from the lung cancer based on diagnosis of disease or the enter of patients in a hospital for period of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the survival function for the lung cancer by using shrinkage method is the best
In this paper we introduce two Algorithms, the first Algorithms when it is odd order and how we calculate magic square and rotation for it. The second Algorithms when it be even order and how to find magic square and rotation for it.
This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.
Mixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.
Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.
to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure
... Show MoreThis paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.