Preferred Language
Articles
/
ijp-327
Nucleon momentum distributions and elastic electron scattering form factors for 48Ti and 54Fe nuclei
...Show More Authors

The nucleon momentum distributions (NMD) for the ground state and elastic electron scattering form factors have been calculated in the framework of the coherent fluctuation model and expressed in terms of the weight function (fluctuation function). The weight function has been related to the nucleon density distributions of nuclei and determined from theory and experiment. The nucleon density distributions (NDD) is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of long-tail behavior at high momentum region of the NMD has been obtained using both the theoretical and experimental weight functions. The observed electron scattering form factors for 48Ti and 54Fe nuclei are in reasonable agreement with the present calculations throughout all values of momentum transfer q.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Inelastic electron scattering form factors involving the second excited 2+ level in the isotopes 50,54,52Cr
...Show More Authors

An expression for the transition charge density is investigated where the deformation in nuclear collective modes is taken into consideration besides the shell model transition density. The inelastic longitudinal form factors C2 calculated using this transition charge density with excitation of the levels for Cr54,52,50 nuclei. In this work, the core polarization transition density is evaluated by adopting the shape of Tassie model together with the derived form of the ground state two-body charge density distributions (2BCDD's). It is noticed that the core polarization effects which represent the collective modes are essential in obtaining a remarkable agreement between the calculated inelastic longitudinal F(q)'s and those of experimen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 31 2019
Journal Name
Iraqi Journal Of Physics
Electromagnetic multipole of positive and negative parity states in 24Mg by elastic and inelastic electron scattering
...Show More Authors

In the present work, the nuclear shell model with Hartree–Fock (HF) calculations have been used to investigate the nuclear structure of 24Mg nucleus. Particularly, elastic and inelastic electron scattering form factors and transition probabilities have been calculated for low-lying positive and negative states. The sd and sdpf shell model spaces have been used to calculate the one-body density matrix elements (OBDM) for positive and negative parity states respectively. Skyrme-Hartree-Fock (SHF) with different parameterizations has been tested with shell model calculation as a single particle potential for reproducing the experimental data along with a harmonic oscillator (HO) and Woods-Saxo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
Charge density distributions for odd-A of 2s-1d shell nuclei
...Show More Authors

An analytical expression for the charge density distributions is derived based on the use of occupation numbers of the states and the single particle wave functions of the harmonic oscillator potential with size parameters chosen to reproduce the observed root mean square charge radii for all considered nuclei. The derived expression, which is applicable throughout the whole region of shell nuclei, has been employed in the calculations concerning the charge density distributions for odd- of shell nuclei, such as and nuclei. It is found that introducing an additional parameters, namely and which reflect the difference of the occupation numbers of the states from the prediction of the simple shell model leads to obtain a remarkabl

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
The Calculation of the Charge Density Distributions and the Longitudinal Form Factors of 10 B Nucleus by Using the Occupation Numbers of the States
...Show More Authors

The charge density distributions of 10 B nucleus are calculated using the
harmonic oscillator wave functions. Elastic and inelastic electron scattering
longitudinal form factors have been calculated for the similar parity states of 10B
nucleus where a core of 4He is assumed and the remaining particles are
distributed over 3/ 2 1p and 1/ 2 1p orbits which form the model space.
Core-polarization effects are taken into account. Core-polarization effects are
calculated by using Tassie model and gives good agreement with the measured
data.

View Publication Preview PDF
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Matter density distribution and longitudinal form factors for the ground and excited states of 17Ne exotic nucleus
...Show More Authors

The two-frequency shell model approach is used to calculate the
ground state matter density distribution and the corresponding root
mean square radii of the two-proton17Ne halo nucleus with the
assumption that the model space of 15O core nucleus differ from the
model space of extra two loosely bound valence protons. Two
different size parameters bcore and bhalo of the single particle wave
functions of the harmonic oscillator potential are used. The
calculations are carried out for different configurations of the outer
halo protons in 17Ne nucleus and the structure of this halo nucleus
shows that the dominant configuration when the two halo protons in
the 1d5/2 orbi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
Study of the matter density distributions of halo nuclei 6He and 16C using the binary cluster model
...Show More Authors

The harmonic oscillator (HO) and Gaussian (GS) wave functions within the binary cluster model (BCM) have been employ to investigate the ground state neutron, proton and matter densities as well as the elastic form factors of two- neutron 6He and 16C halo nuclei. The long tail is a property that is clearly revealed in the density of the neutrons since it is found in halo orbits. The existence of a long tail in the neutron density distributions of 6He and 16C indicating that these nuclei have a neutron halo structure. Moreover, the matter rms radii and the reaction cross section (𝜎𝑅 ) of these nuclei have been calculated using the Glauber model.

View Publication
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
The Electro-Excitation Form Factors for Low-Lying States of 7Li Nucleus
...Show More Authors

The transverse electron scattering form factors have been studied for low –lying excited states of 7Li nucleus. These states are specified by J? T= (0.478MeV), (4.63MeV) and (6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter brms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 15 2020
Journal Name
Modern Physics Letters A
Nuclear matter distributions of neutron rich 6He, 11Li, 14Be and 17B halo nuclei studied by the Bear Hodgson potential
...Show More Authors

The radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee

... Show More
View Publication
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
Study of the Static and Dynamic Nuclear Properties and Form Factors for Some Magnesium Isotopes 29-34 Mg
...Show More Authors

Nuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Elastic longitudinal electon catterting B from factors of
...Show More Authors

Electronic Alattarh been studied long flexible factors forming the nucleus of boron in the shell model framework multipolar been identified factors was introduced into the effects of polarization heart in the first place accounts

View Publication Preview PDF