Preferred Language
Articles
/
ijp-319
Classification of the galaxy Milky Way using variable precision rough sets technique
...Show More Authors

Astronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (9)
Crossref (8)
Scopus Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (5)
Clarivate Crossref
Publication Date
Mon May 01 2023
Journal Name
WiadomoĊ›ci Lekarskie Medical Advances
EVALUATION OF VEST-OVER-PANT TECHNIQUE IN THE TREATMENT OF POST-HYPOSPADIAS URETHROCUTANEOUS FISTULA
...Show More Authors

The aim: In this study, we present and evaluate the vest-over-pants technique as a simple way to correct urethrocutaneous fistulas after hypospadias. Materials and methods: Between October 2018 and June 2020, twenty male patients aged 5 to 20 years came to us with post hypospadias repair fistula, these patients underwent vest-over-pant repair of their fistula. The size of fistula was ranging between 2.5-5 mm. The distribution of fistula was coronal (3 patients), distal penile (9 patients), midshaft (2 patients) and proximal penile (6 patients). In 14 patients there were single fistula and 6 patients had more than one fistula. Eleven of patients were exposed to a previous failed fistula repair procedure. Results: Six months after the operati

... Show More
Publication Date
Wed Dec 01 2021
Journal Name
Computers & Electrical Engineering
Utilizing different types of deep learning models for classification of series arc in photovoltaics systems
...Show More Authors

View Publication
Crossref (14)
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
A New Green Approach of CFIA Technique for Direct Assay with a High Throughput of Sulfamethoxazole Drugs Using Condensation Reaction with NQS Agent
...Show More Authors

A new design of manifold flow injection (FI) coupling with a merging zone technique was studied for sulfamethoxazole determination spectrophotometrically. The semiautomated FI method has many advantages such as being fast, simple, highly accurate, economical with high throughput . The suggested method based on the production of the orange- colored compound of SMZ with (NQS)1,2-Naphthoquinone-4-Sulphonic acid Sodium salt in alkaline media NaOH at λmax 496nm.The linearity range of sulfamethoxazole was  3-100  μg. mL-1, with (LOD) was 0.593 μg. mL-1 and the RSD% is about 1.25 and the recovery is 100.73%. All various physical and chemical parameters that have an effect on the stability and development of

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Chemical Methodologies
Determination of the Quantity of Losartan Active Ingredient in the Medication Formulations via Turbidimetric-Flow Injection Technique
...Show More Authors

Scopus (16)
Scopus
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF