Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films.
Short Multi-Walled Carbon Nanotubes functionalized with OH group (MWCNTs-OH) were used to synthesize flexible MWCNTs networks. The MWCNTs suspension was synthesized using Benzoquinone (BQ) and N, N Dimethylformamide alcohol (DMF) in specific values and then deposited on filter paper by filtration from suspension (FFS) method. Polypyrrole (PPy) conductive polymer doped with metallic nanoparticles (MNPs) prepared using in-situ chemical polymerization method. To improve the properties of the MWCNTs networks, a coating layer of (PPy) conductive polymer, PPy:Ag nanoparticles, and PPy: Cu nanoparticles were applied to the network. The fabricated networks were characterized using an X-ray diffractometer (XRD), UV-Vis. spectrometer, and Ato
... Show MoreWater level and distribution is very essential in almost all life aspects. Natural and artificial lakes represent a large percentage of these water bodies in Iraq. In this research the changes in water levels are observed by calculating the areas of five different lakes in five different regions and two different marshes in two different regions of the country, in a period of 12 years (2001 - 2012), archived remotely sensed images were used to determine surface areas around lakes and marshes in Iraq for the chosen years . Level of the lakes corresponding to satellite determined surface areas were retrieved from remotely sensed data .These data were collected to give explanations on lake level and surface area fluctuations. It is imp
... Show MoreWater produced from power plants is one of the most important sources of water pollution, especially for areas like Baghdad, Contaminated industrial wastewater is a major environmental challenge due to the rapid growth of industries, leading to increased accumulation of harmful pollutants in water resources, the work is intended to study the impact of water generated from a power plant in the south on the level of heavy metals before and after the treatment process and after its discharge to the Tigris River. Objective is to determine the extent of heavy metals such as iron, copper, chromium, and zinc concentration in water extracted from various points and subsequently study the monthly variations of these elements with a view to assessmen
... Show MoreIn this study used three methods such as Williamson-hall, size-strain Plot, and Halder-Wagner to analysis x-ray diffraction lines to determine the crystallite size and the lattice strain of the nickel oxide nanoparticles and then compare the results of these methods with two other methods. The results were calculated for each of these methods to the crystallite size are (0.42554) nm, (1.04462) nm, and (3.60880) nm, and lattice strain are (0.56603), (1.11978), and (0.64606) respectively were compared with the result of Scherrer method (0.29598) nm,(0.34245),and the Modified Scherrer (0.97497). The difference in calculated results Observed for each of these methods in this study.
The aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increas
... Show MoreThe concern of this article is the calculation of an upper bound of second Hankel determinant for the subclasses of functions defined by Al-Oboudi differential operator in the unit disc. To study special cases of the results of this article, we give particular values to the parameters A, B and λ
Electrodeposition of metal oxides on graphite electrodes can improve their ability to remove organic substances. In this work, multicomponent oxides of Mn, Co, and Ni were electrochemically deposited on both the anode and cathode of graphite electrodes to enhance their performance in removing phenol. Formation of the deposit was achieved within 2 h in current densities of 20, 25, 30, and 35 mA/cm2 for better composite properties. The deposited layer was characterized by testing the surface structure, morphology, composition, and roughness. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Atomic force microscopy (AFM) techniques facilitated these tests. The composite electrodes have synthesized
... Show MoreThe fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo
... Show MoreSoil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). Th
... Show More