Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films.
Pulsed laser ablation in liquid (PLAL) has become an increasingly important technique for metals production and metal oxides nanoparticles (NPs) and others. This technique has its many advantages compared with other conventional techniques (physical and chemical). This work was devoted for production of zirconia (ZrO2) nanoparticles via PLAL technique from a solid zirconium target immersed in a wet environment in order to study the effect of this environment on the optical properties and structure of ZrO2 nanoparticles. The solutions which used for this purpose is distilled water (D.W). The produces NPs were characterized by mean of many tests such as UV-visible (UV-Vis.), transmission electron microscope (TEM) and Z-Potential. The UV-Vis.
... Show MoreThe dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the
... Show MoreIn present work an investigation for precise hole drilling via continuous wave (CW) CO2 laser at 150 W maximum output power and wavelength 10.6 μm was achieved with the assistance of computerized numerical controlled (CNC) machine and assist gases. The drilling process was done for thin sheets (0.1 – 0.3 mm) of two types of metals; stainless steel (sst) 321H, steel 33 (st). Changing light and process parameters such as laser power, exposure time and gas pressure was important for getting the optimum results. The obtained results were supported with computational results using the COMSOL 3.5a software code.
Polymer films of PEG and PVA and their blend with different
concentrations of MnCl2 (0, 2, 4, 6 and 10 %.wt) were study using
casting technique. The X-ray spectra of pure PEG, PVA and
PVA:PEG films and with addition of 2% concentrations from
(MnCl2) show amorphous structures. The results for FTIR show the
interaction between the filler and polymer blend results in
decreasing crystallinity with rich amorphous phase. This
amorphous nature confirms the complexation between the filler and
the polymer blend. The optical properties of (PVA:PEG/MnCl2)
contain the recording of absorbance (A) and explain that the
absorption coefficient (α), refractive index (n), extinction coefficient
(ko) and the dielectric cons
This work studied the electrical and thermal surface conductivity enhancement of polymethylmethacrylate (PMMA) clouded by double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotube (MWCNTs) by using pulsed Nd:YAG laser. Variable input factors are considered as the laser energy (or the relevant power), pulse duration and pulse repetition rate. Results indicated that the DWCNTs increased the PMMA’s surface electrical conductivity from 10-15 S/m to 0.813×103 S/m while the MWCNTs raised it to 0.14×103 S/m. Hence, the DWCNTs achieved an increase of almost 6 times than that for the MWCNTs. Moreover, the former increased the thermal conductivity of the surface by 8 times and the later by 5 times.
Background: The bond strength of root canal sealers to dentin was important for maintaining the integrity of the seal in root canal filling in both static and dynamic situations. In a static situation, it should eliminate any space that allowed the percolation of fluids between the filling and the wall while in a dynamic situation; it was needed to resist dislodgement of the filling during subsequent manipulation. Materials and Methods: Forty mandibular premolars were selected for this study. All canals were instrumented using ProTaper rotary instruments. Instrumentation was done with copious irrigation of 5.25% sodium hypochlorite. Roots were randomly divided into four groups according to the type of cleaning and method of root canal irrig
... Show MoreIntrinsic viscosities have been studied for polyethylene oxide in water which has wide industrial applications. The polyethylene oxide samples had two different structures, the first one was linear and covers a wide range of molecular weight of 1, 3, 10, 20, 35, 99, 370, 1100, 4600, and 8000 kg/mol and the second one was branched and had molecular weights of 0.55 and 40 kg/mol.
Intrinsic viscosities and Huggins constants have been determined for all types and molecular weights mentioned above at 25ºC using a capillary viscometer. The values of Mark-Houwink parameters (K and a) were equal to 0.0068 ml/g and 0.67 respectively, and have not been published for this range of molecular weight in as yet.
This work describes an experimental setup to evaluate the photodynamictoxicity of 650 nm diode laser and 532 nm Frequency-doubled Q-Switched Nd:YAG laser on the growth of Candida albicans as well as the potential fungicidal effect when combining the laser irradiation with specific photosensitizers namely methylene blue, toluidine blue, acridine orange and safranin O. In this study the findings showed that the number of colony-forming units per millilitre (CFU/ml) of C. albicans decreased with increasing exposure time. In particular in the case of the frequency doubled Nd:YAG laser combined with safranin O, the best lethal effect occurred at 11 minutes exposure time with 2.26 J/cm² energy density (89.18% reduction) in comparison with the
... Show More