The experimental proton resonance data for the reaction P+48Ti have been used to calculate and evaluate the level density by employed the Gaussian Orthogonal Ensemble, GOE version of RMT, Constant Temperature, CT and Back Shifted Fermi Gas, BSFG models at certain spin-parity and at different proton energies. The results of GOE model are found in agreement with other, while the level density calculated using the BSFG Model showed less values with spin dependence more than parity, due the limitation in the parameters (level density parameter, a, Energy shift parameter, E1and spin cut off parameter, σc). Also, in the CT Model the level density results depend mainly on two parameters (T and ground state back shift energy, E0), which are approximately constant in their behavior with the proton energy compared with GOE model. The RMT estimation used to calculate the corrections of the incompleteness proton resonance measurement data by using two methods; the conventional analysis method, which depends on the resonance widths and the updated, developed, tested and applied a new analysis method, which depends mainly on the resonance spacings. The spacing analysis method is found much less sensitive to non-statistical phenomena than is the width analysis method. Where the analysis of a given data set via these two independent analysis methods indicated the increasing in the reliability of the determination of the missing fraction of levels, the observed fraction f between 0.87+0.13−0.11 – 0.68+0.12−0.12 for different spin-parity of this reaction and then the distinguishability in the level density calculations can be achieved. The modified Porter Thomas distribution along with the maximum likelihood function have been used to get the missing levels corrections for 5 proton resonance sequences in the present reaction. To estimate the present long-range correlations for pure sequence of levels the mean square of the deviation of the cumulative number of levels from a fitted straight line represented by the Dyson and Mehta Δ3 statistic has been employed for spin parity 12+, and calculated the <Δ3> against the cumulative number of proton levels.
Many reports confirm ulcers as an adverse effect of drugs such as nicorandil and aspirin. The exact responsible mechanisms of ulceration have until now not proved. Mucosal ulcers associated with the onset of ulcer are manifested by an increase in proinflammatory cytokine, excessive prostaglandin, and up-regulation of Endothilin-1 level, which directly impacts the release of leptin. These, released locally within mucosal tissues, have played a role in controlling the extent of local inflammatory responses and processes of mucosal repair.
This study was designed to find out the correlation of plasma leptin and prostaglandin levels as a possible mechanism of oral ulcer formation as an adverse effect of nicorandil. The effect of nicorandi
In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show MoreDeveloping an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal
... Show MoreWe have studied theoretically the response of atomic three- level cascade scheme
of rubidium vapor to a strong laser under conditions in which electromagnetically
induced transparency would be induced on a weak probe beam. We show that the
medium that is an opaque to a probe laser can, by applying both lasers
simultaneously, be made transparent.
The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show More