Preferred Language
Articles
/
ijp-269
Evaluated the level density for proton induced nuclear resonances in (P+48Ti) reaction using different models
...Show More Authors

The experimental proton resonance data for the reaction P+48Ti have been used to calculate and evaluate the level density by employed the Gaussian Orthogonal Ensemble, GOE version of RMT, Constant Temperature, CT and Back Shifted Fermi Gas, BSFG models at certain spin-parity and at different proton energies. The results of GOE model are found in agreement with other, while the level density calculated using the BSFG Model showed less values with spin dependence more than parity, due the limitation in the parameters (level density parameter, a, Energy shift parameter, E1and spin cut off parameter, σc). Also, in the CT Model the level density results depend mainly on two parameters (T and ground state back shift energy, E0), which are approximately constant in their behavior with the proton energy compared with GOE model. The RMT estimation used to calculate the corrections of the incompleteness proton resonance measurement data by using two methods; the conventional analysis method, which depends on the resonance widths and the updated, developed, tested and applied a new analysis method, which depends mainly on the resonance spacings. The spacing analysis method is found much less sensitive to non-statistical phenomena than is the width analysis method. Where the analysis of a given data set via these two independent analysis methods indicated the increasing in the reliability of the determination of the missing fraction of levels, the observed fraction f between 0.87+0.13−0.11 – 0.68+0.12−0.12 for different spin-parity of this reaction and then the distinguishability in the level density calculations can be achieved. The modified Porter Thomas distribution along with the maximum likelihood function have been used to get the missing levels corrections for 5 proton resonance sequences in the present reaction. To estimate the present long-range correlations for pure sequence of levels the mean square of the deviation of the cumulative number of levels from a fitted straight line represented by the Dyson and Mehta Δ3 statistic has been employed for spin parity 12+, and calculated the <Δ3> against the cumulative number of proton levels.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 25 2019
Journal Name
Iraqi Journal Of Physics
Nuclear level density with proton resonance using Gaussian orthogonal ensemble theory
...Show More Authors

The Gaussian orthogonal ensemble (GOE) version of the random matrix theory (RMT) has been used to study the level density following up the proton interaction with 44Ca, 48Ti and 56Fe.

A promising analysis method has been implemented based on the available data of the resonance spacing, where widths are associated with Porter Thomas distribution. The calculated level density for the compound nuclei 45Sc,49Vand 57Co shows a parity and spin dependence, where for Sc a discrepancy in level density distinguished from this analysis probably due to the spin  misassignment .The present results show an acceptable agreement with the combinatorial method of level density.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 25 2019
Journal Name
Iraqi Journal Of Physics
The nuclear level density parameter
...Show More Authors

The nuclear level density parameter  in non Equi-Spacing Model (NON-ESM), Equi-Spacing Model (ESM) and the Backshifted Energy Dependent Fermi Gas model (BSEDFG) was determined for 106 nuclei; the results are tabulated and compared with the experimental works. It was found that there are no recognizable differences between our results and the experimental -values. The calculated level density parameters have been used in computing the state density as a function of the excitation energies for 58Fe and 246Cm nuclei. The results are in a good agreement with the experimental results from earlier published work.

View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Partial Level Densities for Neutron Induced Pre-equilibrium Nuclear Reactions
...Show More Authors

The state and partial level densities were calculated using the corresponding formulas that are obtained in the frame work of the exciton model with equidistant spacing model (ESM) and non-ESM (NESM). Different corrections have been considered, which are obtained from other nuclear principles or models. These corrections are Pauli Exclusion Principle, surface effect, pairing effect, back shift due to shell effect and bound state effect . They are combined together in a composite formula with the intention to reach the final formula. One-component system at energies less than 100 MeV and mass number range (50-200) is assumed in the present work. It was found that Williams, plus spin formula is the most effective approach to the composite

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Calculation of The Nuclear Matter Density Distributions and Form Factors For The Ground State of P 12 PBe and P 14 PBe Nuclei
...Show More Authors

The ground state charge, neutron and matter densities for two-neutron halo nuclei P
12
PBe
and P
14
PBe are calculated within a two- frequency shell model approach. In the description of
the halo nuclei it is important to take into account a model space for P
10
PBe and P
12
PBe different
from the two halo neutrons which have to be treated separately in order to explain their
properties. The structures of the halo P
12
PBe and P
14
PBe nuclei show that the dominant
configurations when the two halo neutrons distributed over the 1d shell orbits. Elastic
Coulomb scattering form factors of these two exotic nuclei are also studied through the
combination of the density distributions of

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Iraqi Journal Of Physics
Evaluation of Resonance Strengths and Reaction Rates of 22Ne (p, gamma) 23Na Nuclear Reaction at Thermonuclear Energies
...Show More Authors

At thermal energies near stellar conditions, nuclear reactions are sensitive to resonance strengths of the nuclear reaction cross-section. In this paper, the resonance strengths of  nuclear reaction were evaluated numerically by means of nuclear reaction rate calculations using a written Matlab code, at the energies of interest in stellar nuclear reactions. The results were compared with standard reaction before and after application of a statistical analyses, to select the best parameters that made theoretical results as close as possible to the standard values. Fitting was made for different temperature ranges up to 10 GK, 0.6 GK and 0.25 GK. The evaluated results showed that as the temperature range becomes narrower, more error is ad

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Temperature dependence energy distribution function for proton-tritium fusion reaction
...Show More Authors

The physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon May 28 2018
Journal Name
Iraqi Journal Of Science
Theoretical Study of Nuclear Density Distributions and Elastic Electron Scattering Form Factors of Some Proton Halo Nuclei (17Ne and 8B)
...Show More Authors

     Theoretical investigation of proton halo-nucleus (8B and 17Ne) has revealed that the valence protons are to be in pure (1p1/2)1 orbit for 8B and (1d3/2)2 orbit for 17Ne.  The nuclear matter density distributions, the elastic electron scattering form factors and (proton, charge, neutron and matter) root-mean square (rms) are studied for our tested nuclei, through an effective two-body density operator for point nucleon system folded with two-body full correlation operator's functions. The full correlation (FC's ) takes account of the effect for the strong short range repulsion (SRC's) and the strong tensor force (TC's) in

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Elastic Form Factors and Proton Momentum Distributions for Some fp- Shell Nuclei Using the Coherent Density Fluctuation Model
...Show More Authors

The ground state proton momentum distributions (PMD) and elastic charge form
factors for some odd 1f  2p shell nuclei, such as , , 59 63Co Cu and Cu 65 have been
studied using the Coherent Density Fluctuation Model and formulated by means of
the fluctuation function (weight function) ( ) .
2
f x The fluctuation function has been
connected to the charge density distribution of the nuclei and determined from the
theory and experiment result. The feature of the long-tail behavior at high
momentum region of the PMD has been calculated by both the theoretical and
experimental fluctuation functions. It is found that the inclusion of the quadrupole
form factors ( ) 2 F q C in all nuclei under study, which are de

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Evaluating the phenomenological approach models in predicting the Neutron Induced Deuteron Emission Spectra from Different reactions
...Show More Authors

A neutron induced deuteron emission spectra and double differential cross-sections (DDX), in 27Al (n, D) 26Mg, 51V (n, D)50Ti , 54Fe ( n, D)53Mn and 63Cu (n, D) 62Ni reactions, have been investigated using the phenomenological approach model of Kalbach. The pre-equilibrium stage of the compound nucleus formation is considered the main pivot in the discription of cross-section, while the equilibrium (pick up or knock out ) process is analyzed in the framework of the statistical theory of cluster reactions, Feshbach, Kerman, and Koonin (FKK) model. To constrain the applicable parameterization as much as possible and to assess the predictive power of these models, the calculated results have been compared with the experimental data and othe

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2010
Journal Name
Ibn Al- Haitham J. Fo R Pure & Appl. Sci
Evaluation of The Nuclear Data on(α,n)Reaction for Natural Molybdenum
...Show More Authors

The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 M eV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element

... Show More