The main goal of this work is to obtain the plasma electron temperature Te by optical emission spectroscopy of low pressure microwave argon plasma, as a function of working pressure and microwave power. A plasma system was designed and constructed in our laboratory using a magnetron of domestic microwave oven with power 800W without any commercial part. The applied voltage on the magnetron electrical circuit is changed for the purpose of obtaining the variable values of the microwave power. The spectral detection is performed with a spectrometer of wavelength range (200−1000nm). The working pressure and magnetron applied voltage were 0.3-3.0mbar and 180-240V, respectively. Two methods had been applied to estimate the electron temperature, the ratio of two lines’ intensity and Boltzmann plot method. It was found that, for the plasmas investigated, an increase of the electron temperature when the applied voltage has been increasing, while the electron temperature decreases when the working pressure is increasing.
The corrosion behavior of carbon steel at different Temperatures and in water containing different sodium chloride
concentrations under 3 bar pressure has been investigated using weight loss method . The carbon steel specimens were
immersed in water containing (100,400,700,1000PPM) of NaCl solution and under temperature was increased from
(90-120ºC) under pressures of 3 bar. The results of this investigation indicated that corrosion rate increased with NaCl
concentrations and Temperature.
To increase the sensitivity of dosimeter, it has to improve the properties that are required to increase its sensitivity. It was proven that the dependence of lyoluminscence (LL) of irradiated amino acid (L-prolin) incorporated with chemiluminscence reagent (luciginine) on the pH and temperature of the solution. LL means the emission of light from dissolved material in a suitable solvent, which is previously exposed to ionizing radiation. When the incorporated phosphor irradiated to gamma rays an electronically excited species are trapped within the solid matrix, this extra energy will be emitted in the form of light ( 420-500nm), on dissolving the material in water in this test. The LL intensity increases with increasing pH of the
... Show MoreBackground: Low birth weight (LBW) is the main leading cause of infant death. It is contributing to a variety of short and long term poor health outcomes. Determination of risk factors associated with LBW is important to select a suitable action to prevent or reduce this outcome. Studies on LBW and maternal risk factors in the Kurdistan region of Iraq are scarce.
Objectives: This study aimed to determine risk factors associated with Low birth weight in Sulaimania city, Kurdistan region of Iraq.
Cases and Methods: This study was carried out in the Maternity Hospital in Sulaimania from first of July, 2019 to first of February, 2020. Participants were 300 randomly selected mothers who gave a live birth. The questionnaire form, which c
Activated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
Compaction of triticale grain with three moisture contents (8%, 12%, and 16% wet basis) was measured at five applied pressures (0, 7, 14, 34, and 55 kPa). Bulk density increased with increasing pressure for all moisture contents and was significantly (p < 0.0001) dependent on both moisture content and applied pressure. A Verhulst logistic equation was found to model the changes in bulk density of triticale grain with R2 of 0.986. The model showed similar beha
In this study, the behavior of screw piles models with continuous helix was studied by conducting laboratory experimental tests on a single screw pile that has several aspect ratios (L/D) under the influence of static axial compression loads. The screw piles were inserted in a soft soil that has a unit weight of 18.72 kN/m3 and moisture content of 30.19%. Also, the soil has a liquid limit of 55% and a plasticity index of 32%. A physical laboratory model was designed to investigate the ultimate compression capacity of the screw pile and measure the generated porewater pressure during the loading process. The bedding soil was prepared according to the field unit weight and moisture content and the failure load was assumed correspondin
... Show MoreThe ground state proton, neutron, and matter density distributions and corresponding root-mean-square radii (rms) of the unstable neutron-rich
22C exotic nucleus are investigated by two-frequency shell model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO)
potential are used with two oscillator parameters bcore and bhalo. According to this model, the core nucleons of 20C are assumed to move in the model
space of spsdpf. Shell model calculations are performed with (0+2)hw truncations using Warburton-Brown psd-shell (WBP) interaction. The outer (halo) two neutrons in 22C are assumed to move in HASP (H. Hasper) model space (2s1/2, 1d3/2, 2p3/2, and 1f7/2 orbits) using the HASP interaction. The halo st
The pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o . The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and r
... Show MoreOne of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show More