In the present work, the effect of size of zinc dust particles on
AC argon discharge characteristics are investigated
experimentally. The plasma characteristics are determined by
using optical emission spectroscopy (OES) techniques. The
results illustrated that the electron temperature (Te) in the present
and absent of Zinc dust particle is reduced with increasing of
pressure. The electron temperature decreases with increasing of
Zinc dust size. Excitation temperature Tex is reduces with
increasing of Ar pressure in present and absent of zinc dust
particles. The present of Zinc dust reduce the Tex of Ar in both
Zinc dust size. The electron density increasing in the present and
absent of both zinc dust size. Furthermore, the introduced of zinc
dust in AC discharge increasing of ne.
Employing phase-change materials (PCM) is considered a very efficient and cost-effective option for addressing the mismatch between the energy supply and the demand. The high storage density, little temperature degradation, and ease of material processing register the PCM as a key candidate for the thermal energy storage system. However, the sluggish response rates during their melting and solidification processes limit their applications and consequently require the inclusion of heat transfer enhancers. This research aims to investigate the potential enhancement of circular fins on intensifying the PCM thermal response in a vertical triple-tube casing. Fin arrays of non-uniform dimensions and distinct distribution patterns were des
... Show MoreWell integrity is a vital feature that should be upheld into the lifespan of the well, and one constituent of which casing, necessity to be capable to endure all the interior and outside loads. The casing, through its two basic essentials: casing design and casing depth adjustment, are fundamental to a unique wellbore that plays an important role in well integrity. Casing set depths are determined based on fracturing pressure and pore pressure in the well and can usually be obtained from well-specific information. Based on the analyzes using the improved techniques in this study, the following special proposition can be projected: The selection of the first class and materials must be done correctly and accurately in accordance with the
... Show MoreCoagulation - flocculation are basic chemical engineering method in the treatment of metal-bearing industrial wastewater because it removes colloidal particles, some soluble compounds and very fine solid suspensions initially present in the wastewater by destabilization and formation of flocs. This research was conducted to study the feasibility of using natural coagulant such as okra and mallow and chemical coagulant such as alum for removing Cu and increase the removal efficiency and reduce the turbidity of treated water. Fourier transform Infrared (FTIR) was carried out for okra and mallow before and after coagulant to determine their type of functional groups. Carbonyl and hydroxyl functional groups on the surface of
... Show MoreThis work involves three parts , first part is manufacturing different types of laminated below knee prosthetic socket materials with different classical laminated materials used in Baghdad center for prosthetic and orthotic (4perlon layers+2carbon fiber layer+4 perlon layers) , two suggested laminated materials(3perlon layers+2carbon fiber layer+3 perlon layers) and (3perlon layers+1carbon fiber layer+3 perlon layers) ) in order to choose perfect laminated socket . The second part tests (Impact test) the laminated materials specimens used in socket manufacturing in order to get the impact properties for each socket materials groups using an experimental rig designed especially for this purpose. The interface pressure between
... Show MoreModified bentonite has been used as effective sorbent material for the removal of acidic dye (methyl orange) from aqueous solution in batch system. The natural bentonite has been modified using cationic surfactant (cetyltrimethyl ammonium bromide) in order to obtain an efficient sorbent through converting the properties of bentonite from hydrophilic to organophilic. The characteristics of the natural and modified bentonite were examined through several analyses such as Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Surface area. The batch study was provided the maximum dye removal efficiency of 88.75 % with a sorption capacity of 555.56 mg/g at specified conditions (150 min, pH= 2, 250 rpm, and 0.
... Show MoreThe temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreBiologically active natural compounds are molecules produced by plants or plant-related microbes, such as endophytes. Many of these metabolites have a wide range of antimicrobial activities and other pharmaceutical properties. This study aimed to evaluate (in vitro) the antifungal activities of the secondary metabolites obtained from Paecilomyces sp. against the pathogenic fungus Rhizoctonia solani. The endophytic fungus Paecilomyces was isolated from Moringa oleifera leaves and cultured on potato dextrose broth for the production of the fungal metabolites. The activity of Paecilomyces filtrate against the radial growth of Rhizoctonia solani was tested by mixing the filtrate with potato dextrose agar medium at concentrations of 15%,
... Show MoreA Schiff base ligand (L) was synthesized via condensation of N-( 1-naphthyl) ethylenediamine dihydrochloride with phthalaldehyde. The ligand was characterized by FT-IR, UV–Vis, 1H NMR, mass spectrometry, and elemental analysis (C, H, N). Five metal complexes (Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)) were prepared with the ligand in a 1:1 (M:L) ratio using an aqueous ethanol solution. The complexes were characterized by FT-IR, UV–Vis, mass spectrometry, and elemental analysis (C, H, N). Additionally, 1H NMR spectroscopy was employed for Cd(II) complex. Antimicrobial activity of the ligand and its metal complexes against pathogenic bacteria (K. pneumoniae, E. coli, S. aureus, and S. epidermidis) and fungus (C. albicans) were evaluated
... Show MoreFor this research, the utilisation of electrocoagulation (EC) toremove theciprofloxacin (CIP) and levofloxacin (LVX) from aqueous solutions was examined. The effective removal efficiencies are 93.47% for CIP and 88.00% for LVX, under optimum conditions. The adsorption isotherm models with suitable mechanisms were applied to determine the elimination of CIP and LVX utilizingtheEC method. Thefindingsshowed the adsorption of CIP and LVX on iron hydroxide flocs followed the Sips isotherm, with correlation coefficient values (R2) of 0.939 and 0.937. Threekinetic models were reviewed to determine the accurate CIP and LVX elimination methods using the EC method. The results showed that itfittedfor the second-order model, which indicated that the c
... Show More