In the present work, the effect of size of zinc dust particles on
AC argon discharge characteristics are investigated
experimentally. The plasma characteristics are determined by
using optical emission spectroscopy (OES) techniques. The
results illustrated that the electron temperature (Te) in the present
and absent of Zinc dust particle is reduced with increasing of
pressure. The electron temperature decreases with increasing of
Zinc dust size. Excitation temperature Tex is reduces with
increasing of Ar pressure in present and absent of zinc dust
particles. The present of Zinc dust reduce the Tex of Ar in both
Zinc dust size. The electron density increasing in the present and
absent of both zinc dust size. Furthermore, the introduced of zinc
dust in AC discharge increasing of ne.
In this study multi objective optimization is utilized to optimize a turning operation to reveal the appropriate level of process features. The goal of this work is to evaluate the optimal combination of cutting parameters like feed, spindle speed, inclination angle and workpiece material to have a best surface quality Taguchi technique L9 mixed orthogonal array, has been adopted to optimize the roughness of surface. Three rods of length around (200 mm) for the three metals are used for this work. Each rod is divided into three parts with 50 mm length. For brass the optimum parametric mix for minimum Ra is A1, B1 and C3, i.e., at tool inclination angle (5), feedrate of 0.01, spindle speed of 120
... Show MoreVarious Hall Effects have been successfully observed in samples of n-type indium antimonide with values for conductivity, energy gap, Hall mobility and Hall coefficient all agreeing with theory. A particular interest in developing a method for obtaining accurate values of carrier concentrations in semiconductor samples has been fulfilled with an experimental result of (1.6×1016 cm-3 ±10.7%) giving a percentage difference of (6.7%) to a quoted value of (1.5×1016cm-3) at (77K) using an (80mW C.W. CO2) laser beam at (10.6μm) to illuminate a similar sample of n-type indium antimonide, an "Optical" Hall effect has been observed. Although some doubt has been raised as to the validity of effect i.e. "thermal" rather than "Optical", values o
... Show MoreAn experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate increased, and the maximum Nusselt number ratio (Nu nanofluid/ Nu base fluid) and thermal performance factor
... Show MoreA study of the effects of the discharge (sputtering) currents (60-75 mA) and the thickness of copper target (0.037, 0.055 and 0.085 mm) on the prepared samples was performed. These samples were deposited with pure copper on a glass substrate using dc magnetron sputtering with a magnetic flux density of 150 gauss at the center. The effects of these two parameters were studied on the height, diameter, and size of the deposition copper grains as well as the roughness of surface samples using atomic force microscopy (AFM).The results of this study showed that it is possible to control the specifications of copper grains by changing the discharge currents and the thickness of the target material. The increase in discharge curre
... Show MoreThis study aimed to evaluate the occurrence of microbial contamination in food keeping freezers in some local markets in Baghdad city/ Iraq, as well as the contamination of the hands of workers in markets, and the possibility of contamination caused by the transport of food. 30 samples of snow ice found in food keeping freezers in local markets was randomly collected, and 30 swabs from workers hands were taken from the same markets at the same time. Microbiological examination of ice samples was conducted as well as the hands of workers’swabs, and the bacteria were isolated and diagnosed through microbiological and biochemical tests followed. Microbial test results showed some isolates of bacteria in ice samples obtained from food keep
... Show MorePlasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri
... Show MoreThis study aims to analyze the spectral properties of plasma produced from rice husk(Rh) using the laser breakdown spectroscopy (LIBS) method. The plasma generation process used the fundamental harmonic (1064 nm) of a Q-switched Nd:YAG laser. Yttrium aluminum garnet (YAG) is a man-made crystalline material. The laser fired pulses with a duration of 10 ns and a repetition rate of 6 Hz. Thus, the energy outputs achieved were 50–200 mJ at the wavelength of 1064 (nm). The silica content in the rice hulls was verified using an XRF measurement, which revealed the presence of silica in the rice hulls in a high percentage. Precise beam focusing was achieved by focusing the laser on the target material. This target material is placed with
... Show MoreIn this paper, an experimental study has been conducted regarding the indication of resonance in chaotic semiconductor laser. Resonant perturbations are effective for harnessing nonlinear oscillators for various applications such as inducing chaos and controlling chaos. Interesting results have been obtained regarding to the effect of the chaotic resonance by adding the frequency on the systems. The frequency changes nonlinear dynamical system through a critical value, there is a transition from a periodic attractor to a strange attractor. The amplitude has a very relevant impact on the system, resulting in an optimal resonance response for appropriate values related to correlation time. The chaotic system becomes regular under
... Show More