The effect of short range correlations on the inelastic longitudinal
Coulomb form factors for different states of J 4 , T 1with
excitation energies 3.553,7.114, 8.960 and 10.310 MeV in 18O is
analyzed. This effect (which depends on the correlation parameter )
is inserted into the ground state charge density distribution through
the Jastrow type correlation function. The single particle harmonic
oscillator wave function is used with an oscillator size parameter b.
The parameters and b are considered as free parameters, adjusted
for each excited state separately so as to reproduce the experimental
root mean square charge radius of 18O. The model space of 18O does
not contribute to the transition charge density. As a result, the
inelastic Coulomb form factors of 18O comes absolutely from the
core polarization transition charge density. According to the
collective modes of nuclei, the core polarization transition charge
density is assumed to have the form of Tassie shape. It is found that
the introduction of the effect of short range correlations is necessary
for obtaining a remarkable modification in the calculated inelastic
longitudinal Coulomb form factors and considered as an essential for
explanation the data amazingly throughout the whole range of
considered momentum transfer.
The main objective of the audit process is to enable the auditor to express his neutral technical opinion as to whether the financial statements have been prepared in accordance with the financial reporting framework and fairly express the financial position, the result of the activity and the cash flows. A wrong opinion works to burden the beneficiary parties with great damages, and then the presence of any error or bias from the auditor when applying the rules of professional ethics (such as violating professional confidentiality and conflict of interest and moving away from impartiality and objectivity) negatively affects the performance of his
... Show MoreThe effect of compound machine on wheat "Tamuz cultivar" was studied based on some technical indicators which were tested under three practical speed (PS) of 2.015, 3.143, and 4.216 km.hr-1 and three tillage depth (TD) of 11, 13, and 15cm. The split-split plot arrangement in RCBD with three replications was used. The results showed that the PS of 2.015km.hr-1 was major best than other two speed in all studied conditions, physical properties (SBD and TSP), mechanical parameters (FD, (DP and LAS), and yield and growth parameters (PVI, BY and HI). The TD of 11cm was major effect to the other two levels TD of 13 and TD of 15cm in all studied conditions. All interactions were significant,
Background. Bone healing is a complex and dynamic process that represents a well-orchestrated series of biological events of cellular recruitment, proliferation, and differentiation. The use of medicinal plants in bone healing has attracted increasing interest because of their lower side effects. Punica granatum seed oil (PSO) contains high levels of phenolic compounds, promotes osteoblast function, and plays an important role in bone remodeling. A gelatin sponge (Spongostan) is a hemostatic agent that is extensively applied as scaffolds in engineering and as drug carriers in the medical field. This study aimed to evaluate the effectiveness of PSO for bone healing enhancement. Twenty adult male New Zealand rabbits, weighing an avera
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displaceme
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displacement amplitude respons
... Show MoreIn this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
Abstract
Itraconazole is a triazole antifungal given orally for the treatment of oropharyngeal and vulvovaginal candidiasis, for systemic infections including aspergillosis, candidiasis, and for the prophylaxis of fungal infections in immunocompromised patients.
The study aimed to formulate a practical water-insoluble Itraconazole, with insufficient bioavailability as nanosuspension to increase aqueous solubility and improve its dissolution and oral bioavailability.
Itraconazole nanosuspension was produced by a
... Show MoreThin films of CdTe were prepared with thickness (500, 1000) nm on the glass substrate by vacuum evaporation technique at room temperature then treated different annealing temperatures (373,473,and 573)K for one hour. Results of the Hall Effect and the electrical conductivity of (I-V) characteristics were measured in darkness and light.at different annealing temperature results show that the thin films have ability to manufacture solar cells, and found that the efficient equal to (2.18%) for structure solar cell (Algrid / CdS / CdTe /glass/ Al) and the efficient equal to (1.12%) for structure solar cell (Algrid / CdS / CdTe /Si/ Al) with thick ness of (1000) nm with CdTe thin films at RT.