In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
water and hills are decreased, while vegetation, wet land and barren
land are increased for years 1999 and 2014; comparable with 1990.
The classification accuracy was done by number of random points
chosen on the study area in the field work and geographical data then
compared with the classification results, the classification accuracy for
the proposed SVD method are 92.5%, 84.5% and 90% for years
1990,1999,2014, respectivety, while the classification accuracies for
unsupervised classification method based mean value are 92%, 87%
and 91% for years 1990,1999,2014 respectivety.
In this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel
... Show MoreAudio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreDigital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different
... Show MoreThe growing use of tele
This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret pe
... Show MoreBackground: Cytology is one of the important diagnostic tests done on effusion fluid. It can detect malignant cells in up to 60% of malignant cases. The most important benign cell present in these effusions is the mesothelial cell. Mesothelial atypia can be striking andmay simulate metastatic carcinoma. Many clinical conditions may produce such a reactive atypical cells as in anemia,SLE, liver cirrhosis and many other conditions. Recently many studies showed the value of computerized image analysis in differentiating atypical cells from malignant adenocarcinoma cells in effusion smears. Other studies support the reliability of the quantitative analysisand morphometric features and proved that they are objective prognostic indices. Method
... Show More