Colloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate the sphere diameter. Finally, colloidal crystals were subjected to Z-scan experiment under pulsed Q-switched Nd:YAG laser illumination to characterize it for third order nonlinear optical properties. Z-scan results show the change in transmittance of a beam, and the nonlinear refractive index is n2 = 9.82787 x 10-12 (cm2/GW), while the nonlinear absorption coefficient β= 0.04673908 (cm/GW). These results were attributed to enhance the self-focusing arising from Kerr effect and the two-photon absorption.
This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for
... Show MoreThis paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show MoreSome nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in
... Show MoreIn this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
The growing use of tele
This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret pe
... Show MoreAll-optical canonical logic units at 40 Gb/s using bidirectional four-wave mixing (FWM) in highly nonlinear fiber are proposed and experimentally demonstrated. Clear temporal waveforms and correct pattern streams are successfully observed in the experiment. This scheme can reduce the amount of nonlinear devices and enlarge the computing capacity compared with general ones. The numerical simulations are made to analyze the relationship between the FWM efficiency and the position of two interactional signals. © 2015 Chinese Laser Press
This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.
This work is concerned with studying the optimal classical continuous control quaternary vector problem. It is consisted of; the quaternary nonlinear hyperbolic boundary value problem and the cost functional. At first, the weak form of the quaternary nonlinear hyperbolic boundary value problem is obtained. Then under suitable hypotheses, the existence theorem of a unique state quaternary vector solution for the weak form where the classical continuous control quaternary vector is considered known is stated and demonstrated by employing the method of Galerkin and the compactness theorem. In addition, the continuity operator between the state quaternary vector solution of the weak form and the corresponding classical continuous control qua
... Show More