Preferred Language
Articles
/
ijp-226
Influence of non-thermal argon plasma needle on blood coagulation
...Show More Authors

Non-thermal argon plasma needle at atmospheric pressure was
constructed. The experimental setup was based on a simple and low
cost electric component that generates a sufficiently high electric
field at the electrodes to ionize the argon gas which flow at
atmospheric pressure. A high AC power supply was used with 1.1
kV and 19.57 kHz. Non-thermal Argon plasma used on blood
samples to show the ability of non-thermal plasma to promote blood
coagulation. Three tests have been done to show the ability of plasma
to coagulate both normal and anti-coagulant blood. Each blood
sample has been treated for varying time from 20sec. to 180sec. at
different distances. The results of the current study showed that the
cold plasma produced from argon significantly increase the in vitro
speed of blood coagulation, the plasma increases activation and
aggregation of platelets, causes proliferation of fibroblasts and fibrin
production accelerates blood coagulation.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 11 2006
Journal Name
Iraqi Journal Of Laser
In vivo N2 Laser Effect on Lymphocyte Transformation Capacity and Phagocytosis Activity in Mice
...Show More Authors

The objective of this in vivo study is to investigate the effects of 337.1 nm pulsed N2 laser on cellular immune response represented by lymphocyte transformation capacity and phagocytosis activity in laboratory animals. The samples include 60 adult male BALB/c mice, were divided into control group and experimental groups. The experimental groups were divided into two main groups according to the time period after N2 laser irradiation. Each group was divided into 9 subgroups which exposed to N2 laser radiation at different values of pulse repetition rates and exposure times. The results of immunological tests demonstrated that the exposure to 180 J/cm2 of N2 laser radiation induce adverse effect to cellular immune response. The results o

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2016
Journal Name
International Journal Of Modern Trends In Engineering And Research (ijmter)
An image processing oriented optical mark reader based on modify multi-connect architecture (MMCA)
...Show More Authors

Optical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota

... Show More
Preview PDF
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Microgrid Integration Based on Deep Learning NARMA-L2 Controller for Maximum Power Point Tracking
...Show More Authors

This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength.  This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.

Moreover, the proposed controller i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 01 2024
Journal Name
The Saudi Dental Journal
Different pulp capping agents and their effect on pulp inflammatory response: A narrative review
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Digital Signal Processing
Reverberant signal separation using optimized complex sparse nonnegative tensor deconvolution on spectral covariance matrix
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Post COVID-19 Effect on Medical Staff and Doctors' Productivity Analysed by Machine Learning
...Show More Authors

The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (13)
Scopus Crossref
Publication Date
Tue Aug 16 2022
Journal Name
Journal Of Positive School Psychology
Electronic Publishing And Its Impact On Building And Developing Groups In Jordanian University Libraries
...Show More Authors

Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A New Fractal Printed Dipole Antenna Based on Tent Transformations for Wireless Communication Applications
...Show More Authors

In this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless communication applications. The proposed fractal antenna design is based on the second level tent transformation. The space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed at the same design frequency and using the same substrate

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach
...Show More Authors

Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Fri Sep 27 2024
Journal Name
Journal Of Applied Mathematics And Computational Mechanics
Fruit classification by assessing slice hardness based on RGB imaging. Case study: apple slices
...Show More Authors

Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 %  1.66 %. This

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref