Thin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transi
... Show MoreThis study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal meas
... Show MoreThe paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent,
... Show MoreThe paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.
The characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
In this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show More