Inelastic transverse magnetic dipole electron scattering form
factors in 48Ca have been investigated through nuclear shell model
in an excited state energy Ex= 10.23 MeV which is so called
"mystery case" with different optional choices like effective
interaction, restricted occupation and core polarization interaction.
40Ca as an inert core will be adopted and four orbits with eight
particles distributed mainly in 2p1f model space and in some extend
restricted to make sure about the major accuse about this type of
transition. Theoretical results have been constituted mainly with
experimental data and compared with some important theoretical
results of the same transition.
Objective: The study aim to evaluate secondary schools students' exposure to risk factors in Al-Najaf City. Methodology: Descriptive study conducted in Al- Najaf City/Iraq on students at secondary schools, those aged (12-24) years old, for the period from the 13ed of November 2015 and up to 4ed of August 2015. The sample included secondary school from those schools . Data is collected through a constructed questionnaire, reliability and students (intermediate and secondary) (540) student; (270) male and (270) females who are selected randomly content validity process has been determined for the instrument. Dat
Waveform transport of Pseudo plastic fluid in complaint symmetric channel with culvature properties has designed. The efforts of magnetic force, which has applied by radiate direction in the analysis, is considered by using the influence of Hartmann number. Walls properties with slip conditions on velocity distribution as well as stream function are used. The analysis of" heat and mass transfer" has taken into account. More popularized factual constraints known by the convective conditions are applied. The partial differential equations of motion, temperature and concentration is reduced under the simulation of low quantity of wave number and Reynolds number and then transformed to or
The effect of the magnetic abrasive finishing (MAF) method on the temperature rise (TR), and material removal rate (MRR) has been investigated in this paper. Sixteen runs were to determine the optimum temperature in the contact area (between the abrasive powder and surface of workpiece) and the MRR according to Taguchi orthogonal array (OA). Four variable technological parameters (cutting speed, finishing time, working gap, and the current in the inductor) with four levels for each parameter were used, the matrix is known as a L16 (44) OA. The signal to noise ratio (S/N) ratio and analysis of the variance (ANOVA) were utilized to analyze the results using (MINITAB17) to find the optimum condition and identify the significant p
... Show MoreBackground: Temporomandibular joint disorder (TMD) is a general term that describe a wide variety of conditions that include myogenic pain, internalderangement, arthritic problem, ankylosis of the joint and growth disorders. The aims of study was to evaluate the value of 3 Tesla magnetic resonance imaging in assessment of articular disc position and configuration in patients with temporomandibular joint disorders and to evaluate the correlations of these MRI findings with the clinical signs and symptoms. Materials and methods: A total forty six (30 study and 16 control) participants aged between18 and 49 years, were examined according to Helkimo anamnestic index (questionnaire for anamnesis) and clinical dysfunction index scoring criteria
... Show MoreBackground: Prolapsed intervertebral disc is an important and common cause of low backache. MRI has now become universally accepted investigation for prolapsed intervertebral disc. We, however, regularly come across situations, when MRI shows diffuse disc bulges, even at multiple levels, which cannot be correlated clinically and when such cases are operated, no significant disc prolapse is found resulting in negative exploration.Objective: To evaluate the role of M.R.I. finding not only for diagnosis of disc herniation at lumbar region but also for localization the level of herniationMethods: A prospective study on seventy five symptomatic low backache and MRI confirmed prolapsed intervertebral disc patients at lumbo-sacral region were o
... Show MoreBackground: Prolapsed intervertebral disc is an important and common cause of low backache. MRI has now become universally accepted investigation for prolapsed intervertebral disc. We, however, regularly come across situations, when MRI shows diffuse disc bulges, even at multiple levels, which cannot be correlated clinically and when such cases are operated, no significant disc prolapse is found resulting in negative exploration. Objective: To evaluate the role of M.R.I. finding not only for diagnosis of disc herniation at lumbar region but also for localization the level of herniation Methods: A prospective study on seventy five symptomatic low backache and MRI confirmed prolapsed intervertebral disc patients at lumbo-sacral region were op
... Show MoreIn this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.
We have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV–Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.
The wave functions of the coherent states of the charged oscillator in magnetic field are obtained via a canonical transformation. The numerical calculations of these functions are made and then the space and time plots are obtained. It was shown that these states are Gaussians distributions of widths vary periodically in an opposite way with their peaks. We interpret that is due to the mutual actions of the spreading effect of the wave packet and the reaction of the magnetic field.