The investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
Heat treatment (Tempering) changes the microstructure of base alloy
and its composites which was assessed by DSC scan. Generally,
three main peaks appeared in DSC represented by GP zone, S phase
(precipitations) and dissolution of phases or precipitations. After
tempering, composite with SiC particles showed better results than
base alloy and composite with MgO. Since the optical microscopy
revealed reforming the stable phase Al3Ti with evaporation some
gases from composite. DSC analysis showed the stability of
composite with SiC was up to 270oC.
This study was conducted to estimate the extent of damage to the population in Basra, southern Iraq, specifically the areas adjacent to the Shatt al-Arab and the Arabian Gulf, which are the Al-Fao district and the Al-Siba region. They are affected by the progression of saline water resulting from the lack of water imports and the Karun River interruption, which led to high concentrations of salts in the Shatt Al-Arabs. Consequently, its effect on lands and all life types in these areas requires correcting a map of the study area to drop the groundwater sites as well as calculate the total dissolved salts, electrical conductivity and pH. This study concluded that the groundwater contains very high percentages of total dissolved solid
... Show MoreIn this work, a convex lens concentrating solar collector is designed and manufactured locally by using 10 convex lenses (concentrator) of a diameter 10cm and one Copper absorber tube of a diameter 12.5mm and 1mm in thickness 1m length. Two axes manual Tracking system also constructed to track the sun continuously in two directions. The experiments are made on 17th of May 2015 in climatic conditions of Baghdad. The experimental data are fed to a computer program to solve the thermal performing equation, to find efficiency and actual useful energy. Then this data is used in numerical CFD software for three different absorber diameters (12.5 mm, 18.75 mm and 25 mm). From the results that obtained the maximum the
... Show MoreIn this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
This work reports the study of heat treatment effect on the structural, morphological, optical and electrical properties of poly [3-hexylthiophene] and its blend with [6,6]-phenyl C61 butyric acid methyl ester ( P3HT:PC61BM). X-ray diffraction (XRD) measurements show that the crystallinity of the films increased with annealing. The evaluation of surface roughness and morphology was investigated using atomic force microscope (AFM), and field emission scanning microscope(FESEM). The optical properties were emphasized a strong optical absorption of P3HT compared with the blend. Hall effect measurement was used to study the electrical properties which revealed there is an increase in the electrical conductivity and Hall mobility of th
... Show MoreThe increasing population growth resulting in the tremendous increase in consumption of fuels, energy, and petrochemical products and coupled with the depletion in conventional crude oil reserves and production make it imperative for Nigeria to explore her bitumen reserves so as to meet her energy and petrochemicals needs. Samples of Agbabu bitumen were subjected to thermal cracking in a tubular steel reactor operated at 10 bar pressure to investigate the effect of temperature on the cracking reaction. The gas produced was analyzed in a Gas Chromatograph while the liquid products were subjected to Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Heptane was the dominant gas produced in bitumen cracking at all temperatures and the r
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show MoreIn the present study, the structural properties which included the X-rays diffraction, and DSC, the mechanical properties, which include tensile test, threepoint bending test (Bending Test), hardness test and thermal conductivity of the polymers reinforced with calcite (PVC/CaCO3) at different temperature (25-40-80-
120-160-200-220) °C. The research results showed that the XC degree of X-ray diffraction decreased at high temperatures (220 ˚C), while the inter-polymerized polymer (PVC / CaCO3) increased at high temperatures. The DSC test results showed that the degree of crystallinity (XC) decreases at high temperatures (220 ˚C). The mechanical test results, their values were found to decrease at (