The pre - equilibrium and equilibrium double differential cross
sections are calculated at different energies using Kalbach Systematic
approach in terms of Exciton model with Feshbach, Kerman and
Koonin (FKK) statistical theory. The angular distribution of nucleons
and light nuclei on 27Al target nuclei, at emission energy in the center
of mass system, are considered, using the Multistep Compound
(MSC) and Multistep Direct (MSD) reactions. The two-component
exciton model with different corrections have been implemented in
calculating the particle-hole state density towards calculating the
transition rates of the possible reactions and follow up the calculation
the differential cross-sections, that include MSC and MSD models.
The finite well depth, isospin, shell effects, Pauli effect, charge
effect, pairing, surface, angular and linear momentum distributions
corrections are considered in this work. The nucleons (n and p) and
light nuclei (2D and 3T) have been employed as projectiles at the
target 27Al nuclei and at different incident energies (4MeV, 14 MeV
and 14.8MeV). The results have been compared with the available
experimental and theoretical published work. The comparisons show
an acceptable agreement with the TALAYS code (Tendel 2014) for
the reactions: 27Al (n, n) 27Al, 27Al (p, n) 63Zn, 27Al (p, D) 62Cu, 27Al
(p, p) 63Cu and 27Al (p, 4He)60Ni and at different emission energies
and angles.
هناك عوامل عديدة تؤثر في البنية الشكلية للم ا ركز الحضرية التي تشهد تحولات وبصورة مستمرة ومع
توسع المدينة ونموها تفقد هذه الم ا ركز لمقومات بنيتها الحضرية المتكاملة بسبب تلك التحولات الحاصلة
ضمنه وبصورة ديناميكية من اضافات وتغيرات في النمط الحضري الذي يتشكل من عدة نماذج معمارية
جديدة مؤثرة ولأجل ذلك جاء البحث لايضاح اثر هذه العلاقة بين النمط الحضري والنموذج المعماري
وتحولاته في تكاملية البنية ا
This paper aims at introducing a new generalized differential operator and new subclass of analytic functions to obtain some interesting properties like coefficient estimates and fractional derivatives.
The one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the
The one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreIn this study, the stress-strength model R = P(Y < X < Z) is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used to estimate the parameters namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.
In this paper, we studied the travelling wave solving for some models of Burger's equations. We used sine-cosine method to solution nonlinear equation and we used direct solution after getting travelling wave equation.
A simple UV spectrophotometric differential derivatization method was performed for the simultaneous quantification of three aromatic amino acids of tryptophan, the polar tyrosine and phenylalanine TRP, TYR and PHE respectively. The avoidance of the time and reagents consuming steps of sample preparation or analyze separation from its bulk of interferences made the approach environmentally benign, sustainable and green. The linear calibration curves of differential second derivative were built at the optimum wavelength for each analyze (218.9, 236.1 and 222.5 nm) for PHE, TRP and TYR respectively. Quantification for each analyze was in the concentration range of (1.0– 45, 0.1–20.0 and 1.0– 50.0 μg/ml) at replicates of (n=3) with a re
... Show MoreIn this paper, we introduce and study new classes of soft open sets in soft bitopological spaces called soft (1,2)*-omega open sets and weak forms of soft (1,2)*-omega open sets such as soft (1,2)*-α-ω-open sets, soft (1,2)*-pre-ω-opensets, soft (1,2)*-b-ω-open sets, and soft (1,2)*-β-ω-open sets. Moreover; some basic properties and the relation among these concepts and other concepts also have been studied.
In this paper, several conditions are put in order to compose the sequence of partial sums , and of the fractional operators of analytic univalent functions , and of bounded turning which are bounded turning too.