Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection after classification have been implemented between the new classes of adopted images, and finally change detection using matched filter was applied on the region of interest for each class.
This paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC
... Show MoreSouth Sudan is known by its tribal and racial variation .Tribal Perception represents the
procedure of dealings in Southern society .And that what make Sudan as a stable country that
suffer from divisions . Everybody wants to rule in spite of his inability and un qualification
which enables the establishment of an urbanized country .the frustration of the state in
handling the interior variety on religious, tribal and racial basis and contracting national
ideality in spared by shared ingredients between gathered groups in one state, all these reasons
make it hard to create a united national identity which is able to unite atheist and religious
parties together. Due to this ,the study is established to clarify the nat
In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
Pseudomonas aeruginosa has variety of virulence factors that contribute to its pathogenicity. Therefore, rapid detection with high accuracy and specificity is very important in the control of this pathogenic bacterium. To evaluate the accuracy and specificity of Polymerase Chain Reaction (PCR) assay, ETA and gyrB genes were targeted to detect pathogenic strains of P. aeruginosa. Seventy swab samples were taken from patients with infected wounds and burns in two hospitals in Erbil and Koya cities in Iraq. The isolates were traditionally identified using phenotypic methods, and DNA was extracted from the positive samples, to apply PCR using the species specific primers targeting ETA, the gene encoding for exotoxin A, and gyrB gene. The res
... Show MoreIn the present paper, Arabic Character Recognition Edge detection method based on contour and connected components is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content. The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location .
... Show MoreThe heavy metals Cd, Cu, Fe, pb, and Zn were determined in dissolved and particulate phases of the water,in addition to exchangeable and residual phases of the sediment and in the selected organs of the fish Cyprinus carpio collected from the Euphrates River near Al-Nassiriya city center south of Iraq during the summer period / 2009 .Also sediment texture and total organic carbon(TOC) were measured. Analysis emploing a flam Atomic Absorption Spectrophotometers . The mean regional concentrations of the heavy metals in dissolved (µg/l) and particulate phases (µg/gm) dry weight were Cd (0.15,16.13) ,Cu (0.59,24.48) ,Fe (726,909.4) ,Pb (0.20, 49.95) and Zn (2.5,35.62) respectively,and those for exchangeable and residual phases of the
... Show MoreAl-Yusifia river was assessed at three sampling stations with study period from Autumn 2010 to the end of Summer 2011. The present investigation was carried out on diversity of fungi and bacteria from Al-Yusifia river, Baghdad city. During the study, a total of 12 fungal genus and 6 bacterial genus were isolated during the year seasons. The dominant fungus at the three stations were Penicillium sp., then Rhizopus and Trichophyton megninii while the dominant bacteria was Escherichia coli and Klebsiella sp.
The higher
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show More