Preferred Language
Articles
/
ijp-13
Influence of substrates on the properties of cerium -doped CdO nanocrystalline thin films
...Show More Authors

Transparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a surface roughness of (0.871–16.2) nm as well as root mean square of (1.06-19.7) nm for glass substrate, while for silicon (84.79-107.48) nm, for a pure CdO and doped with Ce (2, 4, and 6 Vol.%). The 300-nm-thin CdO films showed that the optical energy band gap equal 2.6 eV, and increases with increasing doping until reaches a maximum value of 3.25 eV when doping levels 6 Vol.%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Biomimetics, Biomaterials And Biomedical Engineering
Influence of Bioactive and Bio Inert Ceramic Powders on Tribology Properties of PMMA Composite Denture Base
...Show More Authors

Polymer matrix composites are suitable materials for medical applications, such as denture base resin polymethyl methacrylate (PMMA). This includes light weight and high strength. This paper describes the effect of selected weight fractions (1, 2, 3, 4 & 5) % wt of nano(Alumina AL2O3, Zirconia ZrO2, Hydroxyapatite HA and Halloysite nanoClay) reinforcements on the biopolymer matrix (PMMA). Some tribology tests were used to evaluate the prepared system (impact strength, hardness surface, and wear rate) tests. The samples were fabricated by (Hand Lay-Up) with different particle reinforcement percentages. All tests were accomplished at room temperature, and samples were developed according to the ASTM standard. The weight fraction of (4% for AL

... Show More
Scopus (2)
Scopus
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Band Gap Energy for SiC Thin Films Prepared By TEACO2 Laser Irradiated With Nuclear Radiation
...Show More Authors

The effect of high energy radiation on the energy gap of compound semiconductor Silicon Carbide (SiC) are viewed. Emphasis is placed on those effects which can be interpreted in terms of energy levels. The goal is to develop semiconductors operating at high temperature with low energy gaps by induced permanent damage in SiC irradiated by gamma source. TEACO2 laser used for producing SiC thin films. Spectrophotometer lambda - UV, Visible instrument is used to determine energy gap (Eg). Co-60, Cs-137, and Sr-90 are used to irradiate SiC samples for different time of irradiation. Possible interpretation of the changing in Eg values as the time of irradiation change is discussed

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Advances In Condensed Matter Physics
Compositional Dependence of Structural Properties of Prepared Alloys and Films
...Show More Authors

Results of a study of alloys and films with various Pb content have been reported and discussed. Films of of thickness 1.5 μm have been deposited on glass substrates by flash thermal evaporation method at room temperature, under vacuum at constant deposition rate. These films were annealed under vacuum around 10−6Torr at different temperatures up to 523 K. The composition of the elements in alloys was determined by standard surfaces techniques such as atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF), and the results were found of high accuracy and in very good agreement with the theoretical values. The structure for alloys and films is determined by using X-ray

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Preparation and study of the Structural, Morphological and Optical properties of pure Tin Oxide Nanoparticle doped with Cu
...Show More Authors

            In this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue May 02 2023
Journal Name
Journal Of Optoelectronics And Advanced Materials
Preparation of samarium doped-PMMA composite by casting method to evaluate the optical properties and potential applications
...Show More Authors

Samarium ions (Sm +3), a rare-earth element, have a significant optical emission within the visible spectrum. PMMA samples, mixed with different ratios of SmCl3.6H2O, were prepared via the casting method. The composite was tested using UV-visible, photoluminescence and thermogravimetric analysis (TGA). The FTIR spectrometry of PMMA samples showed some changes, including variation in band intensity, location, and width. Mixed with samarium decreases the intensity of the CO and CH2 stretching bands and band position. A new band appeared corresponding to ionic bonds between samarium cations with negative branches in the polymer. These variations indicate complex links between the Sm +3 ion and oxygen in the ether group. The optical absorption

... Show More
Publication Date
Fri Sep 01 2023
Journal Name
Iraqi Journal Of Physics
Study of the Structural, Optical, and Morphological Properties of SnO2 Nanofilms under the Influence of Gamma Rays
...Show More Authors

This study reports the fabrication of tin oxide (SnO2) thin films using pulsed laser deposition (PLD). The effect of 60Co (300, 900, and 1200 Gy) gamma radiation on the structural, morphological, and optical features is systematically demonstrated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and ultraviolet-visible light analysis (UV-Vis), respectively In XRD tests, the size of the crystallites decreased from 45.5 to 40.8 nm for the control samples and from 1200 Gy to 60Co for the irradiated samples. Using FESEM analysis, the particle diameter revealed a similar trend to that attained using XRD; in particular, the average diameters were 93.8 and

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Iraqi Journal Of Physics
Theoretical Investigations of Electronic and Optical Properties of Vanadium Doped Wurtzite Zinc Oxide from First Principle Calculation Method
...Show More Authors

In this study lattice parameters, band structure, and optical characteristics of pure and V-doped ZnO are examined by employing (USP) and (GGA) with the assistance of First-principles calculation (FPC) derived from (DFT). The measurements are performed in the supercell geometry that were optimized. GGA+U, the geometrical structures of all models, are utilized to compute the amount of energy after optimizing all parameters in the models. The volume of the doped system grows as the content of the dopant V is increased. Pure and V-doped ZnO are investigated for band structure and energy bandgaps using the Monkhorst–Pack scheme's k-point sampling techniques in the Brillouin zone (G-A-H-K-G-M-L-H). In the presence of high V content, the ban

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Study the Effect of Annealing on Optical and Electrical Properties of ZnS Thin Film Prepared by CO2 Laser Deposition Technique
...Show More Authors

In this work, ZnS thin films have been deposited by developed laser deposition technique on glass substrates at room temperature. After deposition process, the films were annealed at different temperatures (200ºC , 300 ºC and 400ºC ) using thermal furnace.The developed technique was used to obtain homogeneous thin films of ZnS depending on vaporization of this semiconductor material by continuous CO2 laser with a simple fan to ensure obtaining homogeneous films. ZnS thin films were annealed at temperature 200ºC, 300 ºC and 400ºC for (20) minute in vacuum environment. Optical properties of ZnS thin film such as absorbance, transmittance, reflectance, optical band gap, refractive index extinction coefficient and absorption coefficien

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Preparation of superposed thin film (CdTe)1-xSex / ZnS and Studying the Effect of Concentration on Some its Electrical Properties.
...Show More Authors

Preparation of superposed thin film (CdTe)1-xSex / ZnS) with concentration of (x= 0.1, 0.3, 0.5) at a temperature of substrate (Ts= 80 0C) by using Thermal Vacuum Evaporation System. The measurement of X-ray diffraction shows that the compounds CdTe, ZnS, (CdTe)1-xSex and (CdTe)1-xSex / ZnS have a polycrystalline structure, the C-V characteristic shows that the capacitance degrease by increasing the concentration (x) in reverse bias, while the I-V characteristic shows the current dark (Id) increase in forward and reverse bias by increasing (x) and the photocurrent (Iph) increase in reverse bias by increasing the concentration (x), the values of photocurrent are greater than from the values of the dark current for all concentrations

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 27 2018
Journal Name
Iraqi Journal Of Laser
Investigation of Densified SiO2 Sol-Gel Thin Films Using Conventional and DPSS Laser Techniques
...Show More Authors

The prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).

View Publication Preview PDF