Transparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a surface roughness of (0.871–16.2) nm as well as root mean square of (1.06-19.7) nm for glass substrate, while for silicon (84.79-107.48) nm, for a pure CdO and doped with Ce (2, 4, and 6 Vol.%). The 300-nm-thin CdO films showed that the optical energy band gap equal 2.6 eV, and increases with increasing doping until reaches a maximum value of 3.25 eV when doping levels 6 Vol.%.
Mortar of ordinary Portland cement was blended with cockles shell
powder at different weight ratios to investigate the effect of powder
admixture on their strength and thermal conductivity. Results showed
that addition of cockles shell powder at 50% of mortar weight
improves hardness and compressive strength notably and reduces the
thermal conductivity of the end product. Results suggest the
possibility to incorporate cockles shell powders as constituents in
cement mortars for construction and plastering applications.
Titanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction
... Show MoreBackground: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirements, like low impact and transverse strength, poor thermal conductivity. The purpose of this study was to evaluate the effect of addition a composite of surface treated Nano Aluminum oxide (Al2O3) filler and plasma treated polypropylene fiber (PP) on some properties of denture base material. Materials and methods: One hundred fifty prepared specimens were divided into 5 groups according to the tests, each group consisted of 30 specimens and these were subdivided into 3 groups (unreinforced heat cured acrylic resin as control group),reinforced acrylic resin with( 0.5%wt Nan
... Show MoreRecently, many materials have shown that they can be used as alternatives to chemicals materials in order to be used to improve the properties of drilling fluids. Some of these materials are banana peels and corn cobs which both are considered environmentally- friendly materials. The results of the X-ray diffraction examination have proved that the main components of these materials are cellulose and hemicellulose, which contribute greatly to the increasing of the effectiveness of these two materials. Due to their distinct composition, these two materials have improved the rheological properties (plastic viscosity and yield point) and reduced the filtration of the drilling fluids to a large extent. The addition rates used for each o
... Show MoreOil well drilling fluid rheology, lubricity, swelling, and fluid loss control are all critical factors to take into account before beginning the hole's construction. Drilling fluids can be made smoother, more cost-effective, and more efficient by investigating and evaluating the effects of various nanoparticles including aluminum oxide (Al2O3) and iron oxide (Fe2O3) on their performance. A drilling fluid's performance can be assessed by comparing its baseline characteristics to those of nanoparticle (NPs) enhanced fluids. It was found that the drilling mud contained NPs in concentrations of 0,0.25, 0. 5, 0.75 and 1 g. According to the results, when drilling fluid was used without NPs, the coeff
... Show MoreAl-Si alloys which are widely used in engineering applications due to their outstanding properties can be modified for more enhancements in their properties. Current work investigated the ability of these alloys to be modified by casting them through the addition of nanoparticles. So, Multi-wall carbon nanotubes (CNT) and titanium carbide ceramic particles (TIC) with size of (20 nm) were added with different amounts started from (0.5 up to 3%) weight to cast alloy A356 that was considered to be the base metal matrix, then stirred with different speeds of (270, 800, 1500, 2150) rpm at 520 °C for one minute. The results showed change in microstructure’ shape of the casted alloys from the dendritic to spherical gra
... Show MoreIn the present study, chitosan Schiff base has been prepared from chitosan reaction with p-chloro benzaldehyde. The AuNPs and AgNPs were manufactured by extract of onion peels as a reducing agent. The AuNPs and AgNPs that have been synthesized were characterized through UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan / PEG has been prepared by using the approach of solution casting. Chitosan Schiff base / PEG Au and Ag nanocomposites were synthesized, nanocomposites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1693 cm-1 as a result of the (C=N) imine group. FESEM, DSC and TGA confirm the thermal stability
... Show MoreAIM: To determine the value of the combination of thin-section 3 mm coronal and standard axial DWI and their impact in facilitating the diagnosis of acute brainstem infarction. METHODS: A cross-sectional study conducted from the 1st of April 2017 to the end of February 2018 on 100 consecutive patients (66% were male, and 34% were female) with isolated acute ischemic infarction in the brainstem. The abnormal MRI findings concerning the ischemic lesions were interpreted on standard axial 5 mm and thin-section coronal 3mm DWI. RESULTS: The mean age of the studied group was 69.2 ± 4.3 for male and 72.3 ± 2.5 years. The standard axial DWI can diagnose 20%, 6.7% and 6.7% of the infarctions in midbrain, pons an
... Show MoreThe current study deals with host-guest complex formation between cucurbit [7] urils as host and lansoprazole as guesti using PM3 (semi empirical molecules orbital calculations) also DFT calculations. In this complex, the formation of hydrogen bonding may be occurred through portal oxygen atoms(O2) of cucurbit [7] urils and amine groups (NH 2 )of the drug. The energies of HOMO and LUMO orbital’s have been computed for the host guest complex and its components. The result of the stabilization energy explained a complex formation.