In this study, tin oxide (SnO2) and mixed with cadmium oxide (CdO) with concentration ratio of (5, 10, 15, 20)% films were deposited by spray pyrolysis technique onto glass substrates at 300ºC temperature. The structure of the SnO2:CdO mixed films have polycrystalline structure with (110) and (101) preferential orientations. Atomic force microscopy (AFM) show the films are displayed granular structure. It was found that the grain size increases with increasing of mixed concentration ratio. The transmittance in visible and NIR region was estimated for SnO2:CdO mixed films. Direct optical band gap was estimated for SnO2 and SnO2 mixed CdO and show a decrease in the energy gap with increasing mixing ratio. From Hall measurement, it was found that all the films prepared possess n-type carriers of the charge. The maximum sensitivity of SnO2:CdO mixed films toward NO2 gas was achieved at (10) mixed concentration ratio of CdO at the optimal operating temperature 200°C and maximum sensitivity is equal to (101.75%) with response time (14.6 s) and recovery time (57.0 s).
The aim of the present study is to formulate floating effervescent microsponge tablet of the narrow absorption window drug, Baclofen (BFN) for controlling drug release and thereby decrease the side effect of the drug. The microsponges of BFN were prepared by non-aqueous emulsion solvent diffusion method (oil in oil emulsion method). The effects of drug: polymer ratio, stirring time and type of Eudragit polymer on the physical characteristics of microsponges were investigated and characterized for production yield, loading efficiency, particle size, surface morphology, and in vitro drug release from microsponges. The selected microsponge formula was incorporated into the floating effervescent gastro-retentive tablet. The prepared fl
... Show MoreThe structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t
... Show MoreA new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2
... Show MoreThis article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show MoreThin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
In this study, Cobalt Oxide nanostructure was successfully prepared using the chemical spray pyrolysis technique. The cobalt oxide phase was analysed by X-ray Diffraction (XRD) and proved the preparation of two cobalt oxide phases which are Co3O4 and CoO phases. The surface morphology was characterized by Scanning Electron Microscope (SEM) images showing the topography of the sample with grain size smaller than 100 nm. The optical behavior of the prepared material was studied by UV-Vis spectrophotometer. The band gap varied as 1.9 eV and 2.6 eV for Co3O4 prepared from cobalt sulphate precursor, 2.03 eV and 4.04 eV for Co3O4 prepared from cobalt nitrate precursor, 2.04 eV and 4.01 eV for CoO prepared from cobalt chloride precursor where th
... Show MoreIn this paper, SiO2 nanoparticles thin films were synthesised at different PH values of solution by sol gel method at fixed temperature (25oC) and molar ratio (R =H2O/precursor) of (Tetra Ethyl Ortho Silicate) TEOS as precursor at (R=1). The structure and optical properties of the thin films have been investigated. All thin films were tested by using X-RAY diffraction. All X-RAY spectrum can be indexed as monoclinic structure with strong crystalline (110) plane. The morphological properties of the prepared films were studied by SEM. The results indicate that all films are in nano scale and the particle size around (19-62) nm .The size of silica particles increases with increasing PH value of solution where both the rate of hydrolysis and
... Show MoreMixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding