Thin films of vanadium oxide nanoparticles doped with different concentrations of europium oxide (2, 4, 6, and 8) wt % are deposited on glass and Si substrates with orientation (111) utilizing by pulsed laser deposition technique using Nd:YAG laser that has a wavelength of 1064 nm, average frequency of 6 Hz and pulse duration of 10 ns. The films were annealed in air at 300 °C for two hours, then the structural, morphological and optical properties are characterized using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy respectively. The X-ray diffraction results of V2O5:Eu2O3 exhibit that the film has apolycrystalline monoclinic V2O5 and triclinic V4O7 phases. The FESEM image shows a homogeneous pattern and confirms the formation of uniform nanostructures on the glass substrate. The type of the particle found nanoparticles with different doping concentrations of Eu2O3. The optical energy gap increases with the increase of doping concentration and it varies from 2.67 eV to 2.71 eV. The prepared thin films are used to fabricate sensor against nitrogen dioxide gas. The dependence of sensitivity and response time on doping ratio and operation temperature of gas sensors has been studied, the maximum sensitivity was about 100%, the response time is equal to 24s and recovery time 16s for V2O5 doped 2% Eu2O3 at 50 °C.
Obiovisly that the holy thresholds are directly related to Islam and Muslims and related to the general culture of the Islamic peoples. In terms of architecture, it is considered a distinctive architectural scene that reviews the history of this origin and its architectural styles. Recently, with the increase in the number of pilgrims and visitors to the holy shrines, there is a need to develop and expand the buildings and provide them with services and introduce modern technology. The building of the holy thresholds consists of a number of functional design indicators: The general problem of research is that there is no clear theoretical framework for the design indicators for the development of the holy shrines according to the functio
... Show MoreCold plasma is a relatively low temperature gas, so this feature enables us to use cold plasma to treat thermally sensitive materials including polymers and biologic tissues. In this research, the non-thermal plasma system is designed with diameter (3 mm, 10 mm) Argon at atmospheric pressure as well as to be suitable for use in medical and biotechnological applications.
The thermal description of this system was studied and we observed the effect of the diameter of the plasma needle on the plasma, when the plasma needle slot is increased the plasma temperature decrease, as well as the effect of the voltages applied to the temperature of the plasma, where the temperature increasing with increasing the applied voltage . Results showed t
In this study, chemical oxidation was employed for the synthesis of polypyrrole (PPy) nanofiber. Furthermore, PPy has been subjected to treatment using nanoparticles of neodymium oxide (Nd2O3), which were produced and added in a certain ratio. The inquiry centered on the structural characteristics of the blend of polypyrrole and neodymium oxide after their combination. The investigation utilises X-ray diffraction (XRD), FTIR, and Field Emission Scanning Electron Microscopy (FE-SEM) for PPy, 10%, 30%, and 50% by volume of Nd2O3. According to the electrochemical tests, it has been noted that the nanocomposites exhibit a substantial amount of pseudocapacitive activity.
Solubility problem of many of effective pharmaceutical molecules are still one of the major obstacle in theformulation of such molecules. Candesartan cilexetil (CC) is angiotensin II receptor antagonist with very low water solubility and this result in low and variable bioavailability. Self- emulsifying drug delivery system (SEDDS) showed promising result in overcoming solubility problem of many drug molecules. CC was prepared as SEDDS by using novel combination of two surfactants (tween 80 and cremophore EL) and tetraglycol as cosurfactant, in addition to the use of triacetin as oil. Different tests were performed in order to confirm the stability of the final product which includes thermodynamic study, determination of self-emulsificat
... Show MoreThe parameters of resistance spot welding (RSW) performed on low strength commercial aluminum sheets are investigated experimentally, the performance requirements and weldability issues were driven the choice of a specific aluminum alloy that was AA1050. RSW aluminum alloys has a major problem of inconsistent quality from weld to weld comparing with welding steel
alloys sheet, due to the higher thermal conductivity, higher thermal expansion, narrow plastic temperature range, and lower electrical resistivity. Much effort has been devoted to the study of describing the relation between the parameters of the process (welding current, welding time, and electrode force) and weld strength. Shear-tensile strength tests were performed to ind
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o