Photonic crystal fiber interferometers are widely used for sensing applications. In this work, solid core-Photonic crystal fiber based on Mach-Zehnder modal interferometer for sensing refractive index was presented. The general structure of sensor applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28). To apply modal interferometer theory; collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). Laser diode (1550 nm) has been used as a pump light source. Where a high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted. The experimental work shows that the interference spectrum of Photonic crystal fiber interferometer exhibits good sensitivity to refractive index variations. The response of the PCFI is observed for a range of refractive index values from (1.33 to 1.38), the position of the interference peaks is found to be shifted to longer wavelength with refractive index increasing. A different length of PCFs (2, 3, 4) cm were used, and the maximum refractive index sensitivity of (7.5 pm / RIU) is achieved with a PCF length of 4 cm. This refractive index sensor has distinguished properties as that it small size, high sensitivity, fast response time, design flexibility, and immunity to electromagnetic interference.
Background: Multifactor affect the pathogenesis of thrombosis in solid malignancy; however, a significant role is attributed to the cancer cells ability to interact with and activate the host hemostatic system. [1]
Hemostasis is highly correlated to tumor growth, angiogenesis and metastasis, modulation of these pathways reflects interesting and promising treatment options in the future. [1]
Most patients with cancer frequently suffer from chronic compensated DIC and have abnormal laboratory coagulation tests without clinical manifestations of thrombosis, which is a subclinical hypercoagulable state that can be detected by varying degrees of activation of blood clotting. The results of laboratory tests in th
... Show MoreIn the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreIn this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la
The limitations of wireless sensor nodes are power, computational capabilities, and memory. This paper suggests a method to reduce the power consumption by a sensor node. This work is based on the analogy of the routing problem to distribute an electrical field in a physical media with a given density of charges. From this analogy a set of partial differential equations (Poisson's equation) is obtained. A finite difference method is utilized to solve this set numerically. Then a parallel implementation is presented. The parallel implementation is based on domain decomposition, where the original calculation domain is decomposed into several blocks, each of which given to a processing element. All nodes then execute computations in parall
... Show MoreIn this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la
The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge
... Show MoreSolid waste is a major issue in today's world. Which can be a contributing factor to pollution and the spread of vector-borne diseases. Because of its complicated nonlinear processes, this problem is difficult to model and optimize using traditional methods. In this study, a mathematical model was developed to optimize the cost of solid waste recycling and management. In the optimization phase, the salp swarm algorithm (SSA) is utilized to determine the level of discarded solid waste and reclaimed solid waste. An optimization technique SSA is a new method of finding the ideal solution for a mathematical relationship based on leaders and followers. It takes a lot of random solutions, as well as their outward or inward fluctuations, t
... Show More