Preferred Language
Articles
/
ijp-125
Refractive index sensor based on a solid-core photonic crystal fiber interferometer
...Show More Authors

Photonic crystal fiber interferometers are widely used for sensing applications. In this work, solid core-Photonic crystal fiber based on Mach-Zehnder modal interferometer for sensing refractive index was presented. The general structure of sensor applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28). To apply modal interferometer theory; collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). Laser diode (1550 nm) has been used as a pump light source. Where a high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted. The experimental work shows that the interference spectrum of Photonic crystal fiber interferometer exhibits good sensitivity to refractive index variations. The response of the PCFI is observed for a range of refractive index values from (1.33 to 1.38), the position of the interference peaks is found to be shifted to longer wavelength with refractive index increasing. A different length of PCFs (2, 3, 4) cm were used, and the maximum refractive index sensitivity of (7.5 pm / RIU) is achieved with a PCF length of 4 cm. This refractive index sensor has distinguished properties as that it small size, high sensitivity, fast response time, design flexibility, and immunity to electromagnetic interference.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 24 2017
Journal Name
Iraqi Journal Of Laser
All Fiber Chemical Liquids Refractive Index Sensor Based on Multimode Interference
...Show More Authors

A simple all optical fiber sensor based on multimode interference (MMI) for chemical liquids sensing was designed and fabricated. A segment of coreless fiber (CF) was spliced between two single mode fibers to buildup single mode-coreless-single mode (SCS) structure. Broadband source and optical signal analyzer were connected to the ends of SCS structure. De-ionized water, acetone, and n-hexane were used to test the performance of the sensor. Two influence factors on the sensitivity namely the length and the diameter of the CF were investigated. The obtained maximum sensitivity was at n-hexane at 340.89 nm/RIU (at a wavelength resolution of the optical spectrum analyzer of 0.02 nm) when the diameter of the CF reduced from 125 μm to 60 μ

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 10 2018
Journal Name
Commun.fac.sci.univ.ank.series A2-a3
ULTRAHIGH SENSITIVE REFRACTIVE INDEX SENSOR BASED ON TAPERED MULTICORE OPTICAL FIBER
...Show More Authors

The refractive index sensors based on tapered optical fiber are attractive for many industries due to sensing capability in a variety of application. In this paper, we proposed a refractive index sensor based on multicore fiber (MCF) sandwiched between two standard single mode fibers (SMF). The sensor consisting of three sections, SMF- MCF-SMF is structurally simple and can be easily produced by joining these parts. The MFC contains seven cores and these cores are surrounded by a single cladding. The sensing region is obtained by tapering the MCF section where the evanescent field is generated. The single mode propagating along the SMF is stimulated at the first joint and is coupled to the cladding modes. These modes interfere with the core

... Show More
Publication Date
Sun Oct 01 2023
Journal Name
Optical Fiber Technology
A taper-in-etch based hybrid fiber Mach-Zehnder interferometer hydrogen sensor
...Show More Authors

View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat May 11 2024
Journal Name
Journal Of Optics
The effect of increasing temperature on the sensitivity of photonic crystal fiber
...Show More Authors

Photonic Crystal Fiber Fabry–Perot Interferometers (FPI) based on Surface Plasmon Resonance (SPR) was investigated in this paper in order to detect changes in photonic crystal fiber sensitivity with increasing temperature. FPI is composed of a PCF (ESM-12) solid core spliced with a single-mode fiber (SMF) on one side and a 40nm thick gold Nano film on the other. In order to obtain the SPR curve, the end of PCF can be spliced with the side of SMF before covering the gold film on the PCF. SPR results are included in the suggested sensor, based on the conclusions of the investigations. Resolution (R) is 0.0871, Signal-to-Noise Ratio (SNR) is 0.1867, a figure of merit (FOM) is 0.0069, and sensitivity (S) is 1.1481 . This sensor proposed is s

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Dec 17 2022
Journal Name
Iraqi Journal Of Laser
PDF S and U shape offset studying of the refractive index sensor based on coreless fiber: Aya R. Mejble* Hanan J.Taher
...Show More Authors

Abstract:  Two different shapes of offset optical fiber was studied based on coreless fiber for refractive index (RI)/concentration (con.) measurement, and compare them. These shapes are U and S-shapes, both shapes structures were formed by one segment of coreless fiber (CF) was joined between two single mode (SMF) lead in /lead out with the same displacement (12.268µm) at both sides, the results shows the high sensitive was achieved in a novel S-shape equal 98.768nm/RIU, to our knowledge, no one has ever mentioned or experienced it, it’s the best shape rather than the U-shape which equal 85.628nm/RIU. In this research, it was proved that the offset form has a significant effect on the sensitivity of the sensor. Addi

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 07 2019
Journal Name
Iraqi Journal Of Laser
Tapered Splicing Points SMF-PCF-SMF Structure based on Mach-Zehnder interferometer for Enhanced Refractive Index Sensing
...Show More Authors

Photonic crystal fiber interferometers (PCFIs) are widely used for sensing applications. This work presented solid core-PCFs based on Mach-Zehnder modal interferometer for sensing refractive index. The general structure of sensor was applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28).To apply modal interferometer theory collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). A high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted wavelength. This work studied a Mach-Zahnder interferometer refractive index sensor based on splicing point tapered SMF-PCF-SMF. Relation between refractive index sensitivity and tape

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Estimating concentration of toxic ions Arsenic in water by using Photonic Crystal Fiber based on Surface Plasmon Resonance (SPR)
...Show More Authors

In this work, an enhanced Photonic Crystal Fiber (PCF) based on Surface Plasmon Resonance (SPR) sensor using a sided polished structure for the detection of toxic ions Arsenic in water was designed and implemented. The SPR curve can be obtained by polishing the side of the PCF after coating the Au film on the side of the polished area, the SPR curve can be obtained. The proposed sensor has a clear SPR effect, according to the findings of the experiments. The estimated signal to Noise Ratio (SNR), sensitivity (S), resolution (R), and Figures of merit (FOM) are approaching; the SNR is 0.0125, S is 11.11 μm/RIU, the resolution is 1.8x〖10〗^(-4), and the FOM is 13.88 for Single-mode Fiber- Photonic Crystal Fiber- single mode Fiber (SMF-P

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (3)
Scopus Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Fusion Splicing for a Large Mode Area Photonic Crystal Fiber with Conventional Single Mode Fiber
...Show More Authors

In this paper the experimentally obtained conditions for the fusion splicing with photonic crystal fibers (PCF) having large mode areas were reported. The physical mechanism of the splice loss and the microhole collapse property of photonic crystal fiber (PCF) were studied. By controlling the arc-power and the arc-time of a conventional electric arc fusion splicer (FSM-60S), the minimum loss of splicing for fusion two conventional single mode fibers (SMF-28) was (0.00dB), which has similar mode field diameter. For splicing PCF (LMA-10) with a conventional single mode fiber (SMF-28), the loss was increased due to the mode field mismatch.

View Publication Preview PDF
Publication Date
Fri Dec 15 2023
Journal Name
Iraqi Journal Of Laser
D-shape Optical Fiber Development and Enhancement as a Refractive Indices Sensor Using Surface Plasmon Resonance
...Show More Authors

This article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Aug 20 2021
Journal Name
Iraqi Journal Of Laser
The Influence of No-Core Fiber Length on the Sensitivity in Fiber Optic Strain Sensor
...Show More Authors

The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.

View Publication Preview PDF