Because of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectroscopy (EDX), and field emission scanning electron microscopy (FE-SEM) elucidate that TiO2 was created. In addition, systematically examining the gas detection properties was also done. The gas sensor was produced from TiO2 nanotubes, and the gas-detecting features were directed at nitrogen dioxide (NO2), which is a hazardous gas. The sensor formed from TiO2 nanotubes detects NO2 gas at various temperatures, from room temperature to 300 oC, and it has good sensitivity to this gas. The results exhibit that the gas sensor that was synthesized at 30 V has good sensitivity and a short response time at room temperature for NO2 gas sensing.
Photonic crystal fiber interferometers are used in many sensing applications. In this work, an in-reflection photonic crystal fiber (PCF) based on Mach-Zehnder (micro-holes collapsing) (MZ) interferometer, which exhibits high sensitivity to different volatile organic compounds (VOCs), without the needing of any permeable material. The interferometer is robust, compact, and consists of a stub photonic crystal fiber of large-mode area, photonic crystal fiber spliced to standard single mode fiber (SMF) (corning-28), this splicing occurs with optimized splice loss 0.19 dB In the splice regions the voids of the holey fiber are completely collapsed, which allows the excitation and recombination of core and cladding modes. The device reflection
... Show MoreThe refractive index sensors based on tapered optical fiber are attractive for many industries due to sensing capability in a variety of application. In this paper, we proposed a refractive index sensor based on multicore fiber (MCF) sandwiched between two standard single mode fibers (SMF). The sensor consisting of three sections, SMF- MCF-SMF is structurally simple and can be easily produced by joining these parts. The MFC contains seven cores and these cores are surrounded by a single cladding. The sensing region is obtained by tapering the MCF section where the evanescent field is generated. The single mode propagating along the SMF is stimulated at the first joint and is coupled to the cladding modes. These modes interfere with the core
... Show MoreA simple all optical fiber sensor based on multimode interference (MMI) for chemical liquids sensing was designed and fabricated. A segment of coreless fiber (CF) was spliced between two single mode fibers to buildup single mode-coreless-single mode (SCS) structure. Broadband source and optical signal analyzer were connected to the ends of SCS structure. De-ionized water, acetone, and n-hexane were used to test the performance of the sensor. Two influence factors on the sensitivity namely the length and the diameter of the CF were investigated. The obtained maximum sensitivity was at n-hexane at 340.89 nm/RIU (at a wavelength resolution of the optical spectrum analyzer of 0.02 nm) when the diameter of the CF reduced from 125 μm to 60 μ
... Show MoreThin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and 10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where the
... Show MoreWith growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to esti
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreElectrochemical method was used to prepare carbon quantum dots (CQDs). Size of matter was nature when evaluate via X-ray diffraction (XRD). A distinct peak at 2θ equal to 31.6° and three other small peaks at 38.28°, 56.41° and 66.12° were observed. The measures of Fourier Transform Infrared Spectroscopy (FTIR) showed the bonds in the transmittance spectrum are manufactured with carbon nanostructures in view. The first peaks are the O–H stretching vibration bands at (3417 and 2922) cm−1, (C–O–H at 1400, and 1317) cm−1, (C–H), (C=C), (C–O–H), (C=O), and (C–O) bonds at 2850, 1668, 1101, and 1026 cm−1 sequentially. The transmission electron microscopy (TEM) results presented that the spherical CQDs are in shape and on a
... Show More