This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced by applying a magnetic field and, on the other hand, using the 532 nm wavelength rather than the fundamental wavelength of a laser. The emission lines in the atmosphere's plasma have an appearance of Lorentzian shape. The 532 nm laser exhibited a decrease in both the Larmor radius and the confinement factor compared with the 1064 nm laser. By applying the magnetic field, the Laser Induced Breakdown Spectroscopy (LIBS) intensities increased by 1.44 times when compared to the emissions before applying the field. In addition, the spectral line intensities improved with the fundamental wavelength compared to the second harmonic frequency as a result of the increase in the extracted materials. This is due to the increase in the absorbance of the laser by the target, as some of these materials are excited, so they act as emission sources, which makes them more detectable.
Atmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show MoreOne technique used to prepare nanoparticles material is Pulsed Laser Ablation in Liquid (PLAL), Silver Oxide nanoparticles (AgO) were prepared by using this technique, where silver target was submerged in ultra-pure water (UPW) at room temperature after that Nd:Yag laser which characteristics by 1064 nm wavelength, Q-switched, and 6ns pulse duration was used to irradiated silver target. This preparation method was used to study the effects of laser irradiation on Nanoparticles synthesized by used varying laser pulse energy 1000 mJ, 500 mJ, and 100 mJ, with 500 pulses each time on the particle size. Nanoparticles are characterized using XRD, SEM, AFM, and UV-Visible spectroscopy. All the structural peaks determined by the XRD
... Show MoreLaser ablation of a silver target immersed in distilled water using Nd:YAG laser with a fundamental wavelength of 1064nm was carried out to fabricate silver nanoparticles (Ag NPs) with different laser energy in the presence and absence of magnetic field. UV-Visible spectrum showed that the nanoparticles are almost spherical in shape. The number of Ag NPs increased by increasing laser energy while their particle size was reduced by increasing laser energy without magnetic field. In the presence of magnetic field, the size of Ag NPs increased slightly by increasing laser energy. According to AFM results, the presence of magnetic field did not affect the average diameter of Ag NPs. The presence of a magn
... Show MoreIn this work Polyynes was synthesized by pulse laser ablation of graphite target in ethanol solution. UV-Visible Spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR) and Transmission electron microscopy (TEM) were used to study the optical absorption, chemical bonding, particle size and the morphology. UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen – capped polyyne (Cn+1H2), the absorption peaks intensity increased when the polyynes were produced at different laser energies and the formation rats of polyynes increased with the increasing of laser pulse number. The FTIR absorption peak at 2368.4 cm-1, 1640.0 cm-1 and 1276.
... Show MoreIn this work, the copper metal was treated using Nd:YAG laser with energy 1Joul to enhance corrosion resistance and improve surface properties. The copper metal has many applications in industry as well as water, oil and gas pipes. The same conditions, (laser power density, scan speed, distance between paths, medium gas-air) were applied in the laser surface treatment, After laser treatment, the samples microstructures were investigated using optical microscope (OM) to examine micro structural changes due to laser irradiation. Specimen surfaces were investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), macro hardness, and corrosion test before and after laser treatment to
... Show MoreIn this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
A characteristic study of a passively Q-switched diode pumped solid state laser system is presented in this work. For laser a comparison study for the theoretically calculated results with a simulation results using a software which calculates the Q-switched solid state laser parameters was such as energy, peak power and pulse width were performed. There was a good agreement between our theoretical calculations and the simulation values.
New evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanopartic
... Show MoreExtended calculations for sputtering yield through bombed Nickel – target by Xenon ions plasma are accomplished. The calculations include changing the input parameters: the energy of xenon ions plasma, the hit target angle of nickel target, thickness of the nickel target layer, and the slight change in the surface binding energy of Nickel. The program TRIM is used to accomplish these calculations. The results show that the sputtering yields directly dependent on these parameters. The change in angles of incidence plasma ions and energy leads to a significant change in the sputtering yields. On the other hand, the sputtering yields ore highly affected by changing target width and surface binding energy at fixed ion parameters.