This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced by applying a magnetic field and, on the other hand, using the 532 nm wavelength rather than the fundamental wavelength of a laser. The emission lines in the atmosphere's plasma have an appearance of Lorentzian shape. The 532 nm laser exhibited a decrease in both the Larmor radius and the confinement factor compared with the 1064 nm laser. By applying the magnetic field, the Laser Induced Breakdown Spectroscopy (LIBS) intensities increased by 1.44 times when compared to the emissions before applying the field. In addition, the spectral line intensities improved with the fundamental wavelength compared to the second harmonic frequency as a result of the increase in the extracted materials. This is due to the increase in the absorbance of the laser by the target, as some of these materials are excited, so they act as emission sources, which makes them more detectable.
Alumina thin films have significant applications in the areas of optoelectronics, optics, electrical insulators, sensors and tribology. The novel aspect of this work is that the homogeneous alumina thin films were prepared in several stages to generate a plasma jet. In this paper, aluminium nanoparticles suspended in vinyl alcohol were prepared using exploding wire plasma. TEM analysis was used to determine the size and shape of particles in aluminium and vinyl alcohol suspensions; the TEM images showed that the particle size is 17.2 nm. Aluminium/poly vinyl alcohol (Al/PVA) thin films were prepared using this suspension on quartz substrate by plasma jet technique at room temperature with an argon gas flow rate of 1 L/min. The Al/PV
... Show MoreAbstract:
Aim: The goal of this research was to study the influence of Er,Cr:YSGG laser at short pulse duration (60 µsec) on the number of streptococcus mutans bacteria in vitro.
Material and Methods: twenty-eight extracted third molars free of caries, cracks, and other irregularities were used. For the testing of the materials, both the agar well technique and a tooth cavity model were employed. The agar wells of plates that had been inoculated with Streptococcus mutans previously were stuffed with the test materials, in order to conduct the tests. The zones of inhibition were assessed using millimeter measurements, after an incubation period of 48 hours .In order to a
... Show MoreWhen laser light incident on biological tissue, it is either reflected from the
surface of the tissue (e.g. the skin) or scattered inside the tissue or absorbed .The laser light will be
absorbed by water, hemoglobin and melanin. Absorption is also highly dependent on wave-length of
laser radiation. The absorbed light is converted into kinetic energy leading to laser effect that when
appropriately applied can produce reaction ranging from incision, vaporization to coagulation. Aim of
the study: To evaluate the efficiency of diode Laser 810 ± 20nm in treatment of oral lesions. Methods:
6 patients (2 females and 4 males) with different oral lesions were treated in the hospital of specialized
surgeries by the use of dio
The natural polyphenolic compound that cinnamon contains is well known for its various biological activities, a broad variety of pharmacological and therapeutic properties. Diversified biomedical and pharmacological applications benefit from organic nanoparticles with controlled properties. Bioactive and non-toxic, cinnamon nanoparticles (CNPs) can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using liquid (PLAL) pulse laser ablation technique and defined those NPs. Using Q-switched Nd : YAG With a wavelength of 1064 nm pulse laser of constant energy 500 mj , And different laser pulses ( 250 , 500 , 750 , 1000 ) pulse /sec a pure cinnamon target submerged in
... Show MoreBackground: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show MorePulsed laser ablation in liquid (PLAL) technique can produce high purity nanoparticles, it is a top-down physical method based on the principle of dividing metal ion bulk precursors into metal atoms, this method was used in this work to synthesis cobalt nanoparticals (CoPNs) with the use of Nd: YAG laser with two wavelengths (355 nm) and (532 nm) at energies (500 mJ) and (600 mJ) respectively, with number of pulses (1000,1100, 1200, 1300, and 1400) for each wavelength. The properties of the prepared nanoparticles were studied by UV-Vis, XRD, SEM with EDX, AFM, and FTIR analysis and then its antibacterial activity was studied by applying it on two types of bacteria with gram-positive (Staphylococcus aureus, Streptococc
... Show MoreObjective: The objective of this study was to prepare nanosuspension of a practical water insoluble antiulcer drug which is lafutidine to enhance the solubility, dissolution rate with studying the effect of different formulation variables to obtain the best formula with appropriate physical properties and higher dissolution rate.Methods: Nanosuspension of lafutidine was prepared using solvent anti-solvent precipitation method using Polyvinylpyrrolidone K-90(PVP K-90) as the stabilizer. Ten formulations were prepared to show the effect of different variables in which two formulations showed the effect of stabilizer type, three formulations showed the effect of stabilizer concentration, two formulations showed the effect of combinatio
... Show MoreAbstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influ
... Show MoreCarbon nanoparticles (CNPs) formed by one-step laser ablation in deionized water were carefully studied. Scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and UV–V spectroscopy were used to obtain morphological, chemical, and optical properties of CNPs. SEM outcomes established that the synthesized nanoparticles are semi-spherical with a wide particle size distribution. Raman investigation showed two typical and expected peaks ~ (1300 - 2700) cm−1, which are confirming to transverse and longitudinal modes of the carbon structure. The absorption spectra proved that the intensity of spectra increases as particle size and concentration increase.
Spectral and linear optical properties for a mixture of Rhodamine B (RB) and Fluorescein Sodium (Na Fl) organic laser dyes were determined at different concentrations 10-3, 10-4 M in ethanol solvent at room temperature. The intensity of absorption range is towards longer wavelengths (red shift). The quantum efficiency diminished while the radiative and fluorescence life time increased when increment concentration, organic laser dyes have a spectrum within the range 540-500 nm. Results demonstrate that a mixture of laser dyes are effective optical materials when contrasted with individual laser dyes. It can be utilized as resonator in cavity lasers.