In parallel with the shell model using the harmonic oscillator's single-particle wave functions, the Hartree-Fock approximation was also used to calculate the neutron skin thickness, the mirror charge radii, and the differences in proton radii for 13O-13B and 13N-13C mirror nuclei. The calculations were done for both mirror nuclei in the psdpn model space. Depending on the type of potential used, the calculated values of skin thickness are affected. The symmetry energy and the symmetry energy's slope at nuclear saturation density were also determined, and the ratio of the density to the saturation density of nuclear matter and the symmetry energy has a nearly linear correlation. The mirror energy displacement was calculated, and the findings corresponded well with the available experimental data for the binding energies of the studied mirror nuclei. The measured values of the symmetry energy coefficient for the pair of mirror nuclei agreed with the computed ones, and this coefficient's value rises exponentially as the difference in charge radius increases.
In the present research, the nuclear deformation of the Ne, Mg, Si, S, Ar, and Kr even–even isotopes has been investigated within the framework of Hartree–Fock–Bogoliubov method and SLy4 Skyrme parameterization. In particular, the deform shapes of the effect of nucleons collective motion by coupling between the single-particle motion and the potential surface have been studied. Furthermore, binding energy, the single-particle nuclear density distributions, the corresponding nuclear radii, and quadrupole deformation parameter have been also calculated and compared with the available experimental data. From the outcome of our investigation, it is possible to conclude that the deforming effects cannot be neglected in a characterization o
... Show MoreThe charge density distributions (CDD) and the elastic electron scattering form factors, F(q), of the ground state for some 1f-2p shell nuclei, such as 74Ge, 76Ge, 78Se and 80Se nuclei have been calculated based on the use of occupation numbers of the states and the single particle wave functions of the harmonic oscillator potential with size parameters chosen to reproduce the observed root mean square charge radii for all considered nuclei. It is found that introducing additional parameters, namely β1 and β2 which reflect the difference of the occupation numbers of the states from the prediction of the simple shell model leads to a remarkable agreement between the calculated and experimental results of the charge density distributions
... Show MoreMaintenance of hospital buildings and its management are regarded as an important subject which needs attention because hospital buildings are service institutions which are very important to a society, requiring the search for the best procedure to develop maintenance in hospitals. The research is aimed to determine an equation to estimate the annual maintenance cost for public hospital. To achieve this aim, Al-Sader City Hospital maintenance system in Al-Najaf province has been studied with its main elements through survey of data, records and reports relating to maintenance during the years of the study 2008-2014 and to identify the strengths, weaknesses, opportunities and threat points in the current system through Swat analysi
... Show MoreAbstract\
preparation process of performance evaluation in organizations is of extreme importance, and under development in organizations and the opening of markets and technological developments in the industry and heightened competition among industrial organizations imposed systems are built for performance give a clear picture about performance and competition, And centered research problem in answering the following questions: Is performance evaluation system is available in Wasit State Company for Textile Industries(Research sample ), This research aims to assess the performance of policies and programs in the company, according to guide performance evaluation of programs and policies prepared by the Dutch Cou
... Show MoreHeat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe he
... Show MoreCoherent density fluctuation model (CDFM) has been used to calculate the
proton momentum distributions (PMD) and elastic electron scattering form factors,
F(q), of the ground state for some even mass nuclei of fp-shell, such as 52Cr, 58Fe and
64Ni nuclei. Both of the PMD and F(q) have been expressed in terms of the weight
function ( ( ) )
2
f x which is determined by means of the charge density
distributions (CDD) of the nuclei and determined from theory and experiment. The
feature of the long-tail behavior at high momentum region of the PMD’s has been
obtained by both the theoretical and experimental weight functions. The calculated
form factors of these nuclei are in reasonable agreement with those of th
The radial wave functions of the generalise dWoods–Saxon (GWS) potential within the two-body model of (Core + n) have been used to study the ground-state density distributions of protons, neutrons and matter and the associated root mean square (rms) radii of neutron-rich 14B, 22N, 23O and 24F halo nuclei. The calculated results show that the radial wave functions of the generalised Woods–Saxon potential within the two-body model succeed in reproducing neutron halo in these exotic nuclei. Elastic electron scattering form factors for these nuclei are studied by combining the charge density distributions with the plane-wave Born approximation (PWBA).
It is known that energy subiect has ocuppied a lot of scientests minds about
how to treat the traditional energy and the renewing energy . we know that
most traditional energy coal , oil , Natural gas, neuclear fuel , are limited
guantiy and alsow subjected to be ended .Statics studies refer to reserve
of oil in world will exhausted btween ( 2075- 2100) and alsow cosl too .
While neuclear fuerl which the world seek today through explod the uranium
atom ( 233) the therum atom (239) and neuclear mxied through ruemlear
mixing , These energy have effect on environment and humanity speciaty if
they are used in militery purposes .
For all theses scientests srarch for resources of renewing enery through
researches
In this study, a mathematical model is presented to study the chemisorption of two interacting atoms on solid surface in the presence of laser field. Our mathematical model is based on the occupation numbers formula that depends on the laser field which we derived according to Anderson model for single atom adsorbed on solid surface. Occupation numbers formula and chemisorption energy formula are derived for two interacting atoms (as a diatomic molecule) as they approach to the surface taking into account the correlation effects on each atom and between atoms. This model is characterized by obvious dependence of all relations on the system variables and the laser field characteristics which gives precise description for the molecule –
... Show MoreIn this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.