Preferred Language
Articles
/
ijp-1142
Fatigue and Tensile Characteristics for Composite Materials Used in Prosthetic Socket
...Show More Authors

In this research, the use of natural materials like wool and cannabis as intermediate reinforcement for prosthetic limbs due to their comfort, affordability, and local availability was discussed. As part of this study on below-the-knee (BK) prosthetic sockets, two sets of samples were made using a vacuum method. These sets were made of natural fiber-reinforced polymer composites with lamination 80:20: group (Y) had 4 perlon, 1 wool 4 perlon, and group (G) had 4 perlon, 1 cannabis 4 perlon. The two groups were compared with a socket made of polypropylene. Tensile testing was used to determine the mechanical characteristics of the socket materials. The Y group has a yield stress of 17 MPs, an ultimate strength of 18.75 MPa, and an elastic modulus of 4.021 GPa, while for the G group, these values are 12.75 MPa, 18.84 MPa, and 4.076 GPa, respectively. The fatigue test was used to evaluate the failure characteristics of the socket. An F-socket was utilized to test the interface compression between both the limb and the socket. For the Tekscan sensor, the calculated pressure in the medial region is 350 K Pa, while it is 330 KPa in the posterior region. Solid Works software was used to draw a prosthetic socket for the numerical study. The failure safety agent for the composite material for group Y was 1.26. The finite element method (ANSYS Workbench 14.5) was used to look at the fatigue characteristics to detect the maximum stress, safety factor, and total deformation.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Petrophysical Properties of an Iraqi Carbonate Reservoir Using Well Log Evaluation
...Show More Authors

This research was aimed to determine the petrophysical properties (porosity, permeability and fluid saturation) of a reservoir. Petrophysical properties of the Shuiaba Formation at Y field are determined from the interpretation of open hole log data of six wells. Depending on these properties, it is possible to divide the Shuiaba Formation which has thickness of a proximately 180-195m, into three lithological units: A is upper unit (thickness about 8 to 15 m) involving of moderately dolomitized limestones; B is a middle unit (thickness about 52 to 56 m) which is composed of dolomitic limestone, and C is lower unit ( >110 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Effect of Diffusion Temperature on the some Electrical Properties of CdS:In Thin Films Prepared by Vacuum Evaporation
...Show More Authors

CdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Optical properties of TiO2 thin films prepared by reactive d.c. magnetron sputtering
...Show More Authors

TiO2 thin films were deposited by reactive d.c magnetron sputtering method on a glass substrate with various ratio of gas flow (Oxygen /Argon) (50/50, 100/50 and 150/50) at substrate temperature 573K. It can be observe that the optical energy gap of TiO2 thin films dependent on the ratio of gas flow (oxygen/argon), it varies between (3.45eV-3.57eV) also it is seen that the optical constants (α, n, K, εr and εi ) has been varied with the change of the ratio of gas flow (Oxygen /Argon).

View Publication Preview PDF
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Gas sensitivity properties of TiO2/Ag nanocomposite films prepared by pulse laser deposition
...Show More Authors

In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
Annealing effect on the optical properties of organic semiconductor Alq3: C60 blend thin films
...Show More Authors

The effect of heat treatment using different annealing temperatures on optical properties of bulk heterojunction blend (BHJ) Alq3: C60 thin films which are fabricated by the spin coating technique were investigated in this study. The films have been coated on a glass substrate with speed of 2000 rpm for one min and treated with different annealing temperature (373, 423 and 473) K under vacuum. The optical properties and the chemical bonds structure of blends as-deposited and heat treated have been studied by UV-Vis spectroscopic and Fourier Transform-Infra Red (FTIR) measurements respectively. The results of UV visible show that the optical energy gap decreasing with increasing the annealing temperature for the ratio (100:1) while decrea

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Calculate the Thermal Properties of (S2F2) Using Semi-empirical Quantum Mechanics (MNDO / PM3)
...Show More Authors

In this paper, thermal properties were performed by using semi-empirical theoretical calculations to study the molecular structure of a nonlinear molecular system, the (S2F2) molecule in the infrared region, by using semi-empirical quantum programs in the (MNDO / PM3) method. This study is under the condition of obtaining the stable structure of the molecule in which the molecule obtains the minimum value of the total energy. The thermodynamic properties were also calculated, including the heat of formation, whose value was (-61.002kcal / mol),  the entropy and its value (78.2916 cal / mol.k), as well as the heat capacity  (15.9454 cal / mol.k) and the enthalpy (3763.434 cal /mol),  Gibbs F

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 12 2025
Journal Name
Iraqi Journal Of Mechanical And Material Engineering
STUDY ON THE PARAMETER OPTIMIZATION INMAGNETIC ABRASIVE POLISHING FORBRASS CUZN33PLATE USING TAGUCHI METHOD
...Show More Authors

This paper describes a new finishing process using magnetic abrasives were newly made to finish effectively brass plate that is very difficult to be polished by the conventional machining processes. Taguchi experimental design method was adopted for evaluating the effect of the process parameters on the improvement of the surface roughness and hardness by the magnetic abrasive polishing. The process parameters are: the applied current to the inductor, the working gap between the workpiece and the inductor, the rotational speed and the volume of powder. The analysis of variance(ANOVA) was analyzed using statistical software to identify the optimal conditions for better surface roughness and hardness. Regressions models based on statistical m

... Show More
View Publication
Publication Date
Wed Jul 14 2021
Journal Name
The Open Civil Engineering Journal
Producing Sustainable Concrete using Nano Recycled Glass
...Show More Authors
Background:

Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.

Objective:

Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.

Methods:

A nano recycled glass p

... Show More
View Publication Preview PDF
Crossref (12)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Spe/aapg/seg Asia Pacific Unconventional Resources Technology Conference
Optimizing the dispersion of coal fines using Sodium Dodecyl Benzene Sulfonate
...Show More Authors

Coal fines are highly prone to be generated in all stages of Coal Seam Gas (CSG) production and development. These detached fines tend to aggregate, contributing to pore throat blockage and permeability reduction. Thus, this work explores the dispersion stability of coal fines in CSG reservoirs and proposes a new additive to be used in the formulation of the hydraulic fracturing fluid to keep the fines dispersed in the fluid. In this work, bituminous coal fines were tested in various suspensions in order to study their dispersion stability. The aggregation behavior of coal fines (dispersed phase) was analyzed in different dispersion mediums, including deionized-water, low and high sodium chloride solutions. Furthermore, the effect of Sodium

... Show More
Scopus (12)
Scopus
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Enhancement of Drilling Fluid Properties Using Nanoparticles
...Show More Authors

Nanotechnology has shown a lot of promise in the oil and gas sectors, including nanoparticle-based drilling fluids. This paper aims to explore and assess the influence of various nanoparticles on the performance of drilling fluids to make the drilling operation smooth, cost effective and efficient. In order to achieve this aim, we exam the effect of Multi Wall Carbon Nanotube and Silicon Oxide Nanoparticles as Nanomaterial to prepare drilling fluids samples.

Anew method for mixing of drilling fluids samples using Ultra sonic path principle will be explained. Our result was drilling fluids with nano materials have high degree of stability.

   The results of using Multiwall Carbon Nanotube and Silicon Oxide show t

... Show More
View Publication Preview PDF