This study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percentage of the elements was determined relative to iron, where in comet Temple 1, the most significant percentage of the element ratio potassium to iron is K / Fe ~ 28.2%, while the lowest value is Ca / Fe ~ 1.3%. For the comet, 67P/Churyumov-Gerasimenko, the most significant percentage of the elements relative to iron is also for potassium, K / Fe ~ 89.5%; while the lowest value is Ni / Fe ~ 0.26. In general, comparing both comets, the greatest percentage of the elements relative to iron is K / F. Iron is the base element in the structure of both comets, followed by potassium.
In this paper, a new hybrid algorithm for linear programming model based on Aggregate production planning problems is proposed. The new hybrid algorithm of a simulated annealing (SA) and particle swarm optimization (PSO) algorithms. PSO algorithm employed for a good balance between exploration and exploitation in SA in order to be effective and efficient (speed and quality) for solving linear programming model. Finding results show that the proposed approach is achieving within a reasonable computational time comparing with PSO and SA algorithms.
In this paper, we propose a new approach of regularization for the left censored data (Tobit). Specifically, we propose a new Bayesian group Bridge for left-censored regression ( BGBRLC). We developed a new Bayesian hierarchical model and we suggest a new Gibbs sampler for posterior sampling. The results show that the new approach performs very well compared to some existing approaches.
This paper includes the estimation of the scale parameter of weighted Rayleigh distribution using well-known methods of estimation (classical and Bayesian). The proposed estimators were compared using Monte Carlo simulation based on mean squared error (MSE) criteria. Then, all the results of simulation and comparisons were demonstrated in tables.
The objective of this paper is to study the dependent elements of a left (right)
reverse bimultipliers on a semiprime ring. A description of dependent elements of
these maps is given. Further, we introduce the concept of double reverse ( , )-
Bimultiplier and look for the relationship between their dependent elements.
The present paper is very important for study of biodiversity of Iraq , to know how the
changes going and how the laughing dove S. senegalensis was a rare species in Iraq and now
is common and also the (baz) gosh hawk A. gentilis is common and the most famous 6rd of
pray in Iraq, till now missing from ornithologist and bird watcher to record it
In this paper the effect of engagement length, number of teeth, amount of applied load, wave propagation time, number of cycles, and initial crack length on the principal stress distribution, velocity of crack propagation, and cyclic crack growth rate in a spline coupling subjected to cyclic torsional impact have been investigated analytically and experimentally. It was found that the stresses induced due to cyclic impact loading are higher than the stresses induced due to impact loading with high percentage depends on the number of cycles and total loading time. Also increasing the engagement length and the number of teeth reduces the principal stresses (40%) and
(25%) respectively for increasing the engagement length from (0.15 to 0
The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky the
... Show MoreThis research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV
... Show More