Preferred Language
Articles
/
bxZgU4cBVTCNdQwClUWY
Aerodynamic Characteristics of a Rectangular Wing Using Non-Linear Vortex Ring Method
...Show More Authors

The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky theorem of the airfoil. The method is simple and based mainly on iterative procedure to find the wings post stall aerodynamic results. Parametric investigation was considered to give the best performance and results for the rectangular wings. Wing of NACA 0012 cross sectional airfoil was studied and compared with published experimental data for different speeds and angle of attacks. Pressure, skin friction, lift, drag, and pitching moment coefficients are presented and compared good with experimental data. The present method shows simple, quick and accurate results for rectangular wings of different cross-section airfoils.

View Publication
Publication Date
Fri Mar 31 2017
Journal Name
Journal Of Engineering
Aerodynamic Characteristics of a Rectangular Wing Using Non-LinearVortex Ring Method
...Show More Authors

The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky the

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 05 2003
Journal Name
. Sc. Conf. Of The College 5th Of Eng. Univ. Of Baghdad 2003
COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS FOR A FORWARD SWEPT WING AIRCRAFT
...Show More Authors

The aerodynamic characteristics of the forward swept wing aircraft have been studied theoretically and experimentally. Low order panel method with the Dirichlet boundary condition have been used to solve the case of the steady, inviscid and compressible flow. Experimentally, a model was manufactured from wood to carry out the tests. The primary objective of the experimental work was the measurements of the wake dimensions and orientation, velocity defect along the wake and the wake thickness. A blower type low speed (open jet) wind tunnel was used in the experimental work. The mean velocity at the test section was (9.3 m/s) and the Reynolds number based on the mean aerodynamic chord and the mean velocity was (0.46x105). The measurements sho

... Show More
View Publication
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Element Method With Linear Rectangular Element for Solving Nanoscale InAs⁄GaAs Quantum Ring Structures
...Show More Authors

        This paper is concerned with the solution of the nanoscale structures consisting of the   with an effective mass envelope function theory, the electronic states of the  quantum ring are studied.  In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of  quantum rings are studied by the one electronic band Hamiltonian effective mass approximati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 23 2023
Journal Name
Journal The College Of Basic Education / Al-mustansiriyah University
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.

View Publication
Crossref (1)
Crossref
Publication Date
Sun Jun 23 2019
Journal Name
Journal Of The College Of Basic Education
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
STATIC PERFORMANCE CHARACTERISTICS OF VORTEX RATE SENSOR
...Show More Authors

The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteri

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Static Performance Characteristics Of Vortex Rate Sensor
...Show More Authors

The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics .Vortex rat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Al-khwarizmi Engineering Journal
The Effects of Vortex Generator Types on Heat Transfer and Flow Structure in a Rectangular Duct Flows
...Show More Authors

    In this numerical study a detailed evaluation of the heat transfer characteristics and flow structure in a laminar and turbulent flow through a rectangular channel containing built-in of different type vortex generator has been a accomplished in a range of Reynolds number between 500 and 100,000.A modified version of ESCEAT code has been used to solve Navier-Stokes and energy equations. The purpose of this paper is to present numerical comparisons in terms of temperature, Nusselt number and flow patterns on several configurations of longitudinal vortex generator including new five cases. The structures of heat and flow were studied, using iso-contours of velocity components, vortices, temperature and Nusselt n

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Italian Journal Of Pure And Applied Mathematics
The non-zero divisor graph of a ring
...Show More Authors

Scopus (5)
Scopus
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Pulsed Laser Deposition of Tio2 Nanostructures for Verify the Linear and Non-Linear Optical Characteristics
...Show More Authors

The present work aims to achieve pulsed laser deposition ofTiO2 nanostructures and investigate their nonlinear properties using z-scan technique.The second harmonic Q-switched Nd: YAG laser at repetition rate of 1Hz and wavelength of 532 nm with three different laser fluencies in the range of 0.77-1.1 J/cm2 was utilized to irradiate the TiO2 target. The products of laser-induced plasma were characterized by utilizing UV-Vis absorption spectroscopy, x-ray diffraction (XRD), atomic force Microscope (AFM),and Fourier transform infrared (FTIR). A reasonable agreement was found among the data obtained usingX-Ray diffraction, UV-Vis and Raman spectroscopy. The XRD results showed that the prepared TiO2

... Show More
View Publication Preview PDF
Scopus (37)
Crossref (33)
Scopus Crossref