This research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers around CdTe QDs during growth stages, which could potentially induce quenching in the emission spectrum. The optical examinations unveiled a discernible redshift towards higher wavelength values as the reaction progressed. This spectral shift was coupled with an enlargement in QDs size and a decrease in the energy gap. Using PL and UV analysis techniques enabled a comprehensive study of the optical attributes of the CdTe and CdTe/CdSe QD systems. Our findings underscored the influence of growth conditions and shell materials on the optical properties of QDs. The observed changes in absorbance, peak intensity, wavelength values, QDs size, and energy gap with increasing reaction time provided valuable insights into the growth dynamics of these QD structures.
Dental clinicians and professionals need an affordable, nontoxic, and effective disinfectant against infectious microorganisms when dealing with the contaminated dental impressions. This study evaluated the efficiency of hypochlorous acid (HOCl) as an antimicrobial disinfectant by spraying technique for the alginate impression materials, compared with sodium hypochlorite, and its effect on dimensional stability and reproduction of details. HOCl with a concentration of 200 ppm for 5 and 10 min was compared with the control group (no treatment) as a negative control and with sodium hypochlorite (% 0.5) as a positive control. Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa were selected to assess the antimicrobi
... Show MoreIn recent years, nano-modified asphalt has gained significant attraction from researchers in the design of asphalt pavement fields. The recently discovered Titanium dioxide nanoparticles (TiO2) are among the most exciting and promising nanomaterials. This study examines the effect of 1, 3, 5, and 7% of nano-TiO2 by weight of asphalt on some of its rheological and hardened properties. The experimental study included physical and rheological properties. The asphalt penetration, softening point, ductility, and rotational viscometer tests indicate that 5% nano-TiO2 is the ideal amount to be added to bitumen as a modifier. The
Background: Dental stone casts come into contact with impression materials and becomes susceptible to cross contamination from saliva and blood. This study was done to evaluate the physical and mechanical properties of dental stone type IV after treatments with various disinfecting agents and regimes (methods). Materials and Methods: Type IV dental stone and different types of disinfecting agents were used and divided into seven groups: G1: dental stone without disinfection (control group), G2: dental stone mixed with silver nitrate powder 0.5% , G3: dental stone mixed with silver nitrate powder 1%, G4: dental stone mixed with copper sulfate powder 0.5%, G5: dental stone mixed with copper sulfate powder 1% ,G6: dental stone immersed in prop
... Show MoreThin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin film
... Show MoreBiodiesel define as the mono-alkyl esters of vegetable oil and animal fats is an alternative diesel fuel that is steadily gaining attention because the combustion of fossil fuels such as coal, oil and natural gas has been identify as a major cause of the increase in the concentration of carbon dioxide in the earth’s atmosphere and causing global warming.
The present work concerns with estimating the physical properties experimentally such as kinematic viscosity, density, flash point and carbon residue of biodiesel that produced by the esterification reaction of methanol and oleic acid with homogeneous catalysts H2SO4 in a lab-scale packed reactive distillation column using the best operating conditions of methanol to oleic acid 8:1,
Fiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano
... Show More