Sol-gel method was use to prepare Ag-SiO2 nanoparticles. Crystal structure of the nanocomposite was investigated by means of X-ray diffraction patterns while the color intensity was evaluated by spectrophotometry. The morphology analysis using atomic force microscopy showed that the average grain sizes were in range (68.96-75.81 nm) for all samples. The characterization of Ag-SiO2 nanoparticles were investigated by using Scanning Electron Microscopy (SEM). Ag-SiO2 NPs are highly stable and have significant effect on both Gram positive and negative bacteria. Antibacterial properties of the nanocomposite were tested with the use of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The results have shown antibacterial effect of the Ag-SiO2 prepared as nanogel and nanopowder states, while the Ag-SiO2 nanopowder showed the highest capability against S. aureus. Both methods of biofilm showed an inhibition effect for Ag-SiO2 NPs, the synthetic Ag-SiO2 NPs showed highest inhibition effect on Gram positive bacteria S. aureus by using the biofilm microtiter method.
In this paper, magnesium oxide nanoparticles (MgO NPS) have been prepared and characterized and its concentration effect has been studied on polymers surface (MgO NPS). The results showed that the degradation of poly methyl methacrylate increased when using such metal oxide. The results also showed that the metal oxide increased the degradation of poly methyl methacrylate. X-ray diffraction, scanning electron microscopy, atomic force microscopy were used to study the morphological characteristics and size of nano MgO particles analysis. Films were prepared by mixing the different masses of MgO NPS (0.025, 0.05, 0.1, 0.2 and 0.4) % with a polymer solution ratio (W/V) 7 %. Photo-
... Show MoreStructural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 v
Beryllium Zinc Oxide (BexZn1-xO) ternary nano thin films were deposited using the pulsed laser deposition (PLD) technique under a vacuum condition of 10-3 torr at room temperature on glass substrates with different films thicknesses, (300, 600 and 900 nm). UV-Vis spectra study found the optical band gap for Be0.2Zn0.8O to be (3.42, 3.51 and 3.65 eV) for the (300, 600 and 900nm) film thicknesses, respectively which is larger than the value of zinc oxide ZnO (3.36eV) and smaller than that of beryllium oxide BeO (10.6eV). While the X-ray diffraction (XRD) pattern analysis of ZnO, BeO and Be 0.2 Zn 0.8 O powder and nano-thin films indicated a hexa
... Show MoreEffect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
Wet granulation method was used instead of conventional pan coating or fluidized –bed coating technique to prepare enteric-coated diclofenac sodium granules, using ethanolic solution of EudragitTM L100 as coating, binding and granulating agent .Addition of PEG400 or di-n-butyl phthalate as a plasticizer was found to improve the enteric property of the coat.
Part of the resulted granules was filled in hard gelatin capsules (size 0), while the other part was compressed into tablets with and without disintegrant.
The release profile of these two dosage forms in 0.1N HCl (pH 1.2)for 2 hours, and in phosphate buffer (pH 6.8) for 45 minutes as well as the release kinetic were compared with that of the en
... Show MoreHybrid bilayer heterojunction Zinc Phthalocyanine (ZnPc) thin-film P-type is considered as a donor active layer as well as the Zinc Oxide (ZnO) thin film n-type is considered as an acceptor with (Electron Transport Layer). In this study, using the technique of Q-switching Nd-YAG Pulsed Laser Deposition (PLD) under vacuum condition 10-3 torr on two ITO (Indium Tin Oxide) and (AL) electrodes and aluminum, is used to construct the hydride bilayer photovoltaic solar cell heterojunction (PVSC). The electrical properties of hybrid heterojunction Al/ZnPc/ZnO/ITO thin film are studied. The results show that the voltage of open circuit (V_oc=0.567V), a short circuit (I_sc=36 ?A), and the fill factor (FF) of 0.443. In addition, the conversion
... Show Morethin films of se:2.5% as were deposited on a glass substates by thermal coevaporation techniqi=ue under high vacuum at different thikness
Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters
... Show MoreThin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transi
... Show More