Sol-gel method was use to prepare Ag-SiO2 nanoparticles. Crystal structure of the nanocomposite was investigated by means of X-ray diffraction patterns while the color intensity was evaluated by spectrophotometry. The morphology analysis using atomic force microscopy showed that the average grain sizes were in range (68.96-75.81 nm) for all samples. The characterization of Ag-SiO2 nanoparticles were investigated by using Scanning Electron Microscopy (SEM). Ag-SiO2 NPs are highly stable and have significant effect on both Gram positive and negative bacteria. Antibacterial properties of the nanocomposite were tested with the use of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The results have shown antibacterial effect of the Ag-SiO2 prepared as nanogel and nanopowder states, while the Ag-SiO2 nanopowder showed the highest capability against S. aureus. Both methods of biofilm showed an inhibition effect for Ag-SiO2 NPs, the synthetic Ag-SiO2 NPs showed highest inhibition effect on Gram positive bacteria S. aureus by using the biofilm microtiter method.
In this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.
Carbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.
This paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ΔG, ΔH, and ΔS thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated.
This study describes how fuzzy logic control FLC can be applied to sonars of mobile robot. The fuzzy logic approach has effects on the navigation of mobile robots in a partially known environment that are used in different industrial and society applications. The fuzzy logic provides a mechanism for combining sensor data from all sonar sensors which present different information. The FLC approach is achieved by means of Fuzzy Decision Making method type of fuzzy logic controller. The proposed controller is responsible for the obstacle avoidance of the mobile robot while traveling through a map from a home point to a goal point. The FLC is built as a subprogram based on the intelligent architecture (IA). The software program uses th
... Show More—Medical images have recently played a significant role in the diagnosis and detection of various diseases. Medical imaging can provide a means of direct visualization to observe through the human body and notice the small anatomical change and biological processes associated by different biological and physical parameters. To achieve a more accurate and reliable diagnosis, nowadays, varieties of computer aided detection (CAD) and computer-aided diagnosis (CADx) approaches have been established to help interpretation of the medical images. The CAD has become among the many major research subjects in diagnostic radiology and medical imaging. In this work we study the improvement in accuracy of detection of CAD system when comb
... Show MoreIn this work ,glass-metal apparatus was designed and manufactured which used for preparing ahigh purity uranium. The reaction is simply take place between iodine vapour and uranium metal at 500C in closed system to form uranium tetra iodide which is decomposed on hot wire at high temperature around 1100C. Also another apparatus was made from Glass and used for preparing ahigh purity of UI4 more than 99.9% purity.
This work deals with separation of the aromatic hydrocarbons benzene, toluene, and xylene (BTX) from reformate. The separation was examined using adsorption by molecular sieve zeolite 13X in a fixed bed process. The concentration of aromatic hydrocarbons in the influent and effluent streams was measured using gas chromatography. The effect of flow rate and bed length of adsorbent on the adsorption of multicomponent hydrocarbons and adsorption capacity of molecular sieve was studied. The tendency of aromatic hydrocarbons adsorption from reformate is in the order: benzene >toluene>xylenes.
With the wide developments of computer applications and networks, the security of information has high attention in our common fields of life. The most important issues is how to control and prevent unauthorized access to secure information, therefore this paper presents a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of encryption in Rijndael-AES algorithm. This paper presents a proposed Rijndael encryption and decryption process with NTRU algorithm, Rijndael algorithm is widely accepted due to its strong encryption, and complex processing as well as its resistance to brute force attack. The proposed modifications are implemented by encryption and decryption Rijndael
... Show More