Biomedical alloy 316L stainless steel enhancing to replace biological tissue or to help stabilize a biological structure, such as bone tissue, enhancing were coated with deposition a thin layer of silver nanoparticles as anti-bacterial materials by using DC- magnetron sputtering device. The morphology surface of The growth nanostructure under the influence of different working pressure were studied by atomic force microscope. The average grain size decrease but roughness of the silver thin layer was increased with‖ ―increasing the working pressure. The thickness of silver thin layer was increased from 107 nm at 0.08 mbar to 126 nm at 1.1 mbar. Antimicrobial activity of silver thin layers at different working pressure were studied. The results showed that the increasing in working pressure, lead to increase in activity of silver thin coating layer against the bacteria as a result of increasing in thickness and‖ roughness of thin coating layer. This work has been extended to study the anti-bacterial activity were fount the diameters of inhibition zone of gram positive bacteria between 16.5±1.5 and 19±0.5 while the diameters of inhibition zone of gram positive bacteria between 17±1 and 26±1. Finally the measurements of the 316L alloy coated by silver nanocoating layer after immersing the in simulated body fluid (SBF) solution for one month is the XRD pattern for the sample showed obviously that the Hydroxyapatite layer was appeared at (2= 31.8).
Abstract In the current contribution, a novel binuclear nickel(II) and zinc(II) complexes were prepared from a hexadentate ligand prepared via condensation of 3,3'-Bipyridine-6,6'-dicarbaldehyde , 2-amino-5-chlorobenzaldehyde and 2-Aminophenol .The symmetric ligand (H2DTPE) and its metal complexes were illustrated utilizing various techniques of physicochemical containing magnetic moment, analytical analysis and spectroscopy of mass, IR, 13C and 1H NMR, TGA and UV-Vis. The particles of MO Nanoscale were created from the labeled complex applying the ways of pyrolysis and utilizing methods of XRD, FT-IR, and FE-SEM, that specified close compatibility with the typical pattern for nanoparticles of NiO, ZnO and appeared the reasonable size in
... Show MoreIsolation of fungi was performed from February to July, 2019. One hundred clinical specimens were collected from King Abdullah Hospital (KAH) Bisha, Saudi Arabia. Samples were collected from twenty patients of different ages (30 - 70 years old) ten males and ten females. The samples were collected from patients with the two types of diabetics. Specimens included blood, hair, nail, oral swabs and skin. Specimens were inoculated on Sabourauds Dextrose agar containing chloramphenicol. Thirteen fungal species were isolated and identified. The isolated species were: Aspergillus flavus, A. niger, A. terrus, A. nidulans, A. fumigatus, Candida albicans, C. krusei, C. parapsilosis, C. Tropicalis, Curvularia lunata, Fusarium solani, Penicill
... Show MoreSome azo compounds were prepared by coupling the diazonium salts of amines with 2,4-dimethylphenol The structure of azo compounds were determined on the basis of elemental analyses, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Complexes of nickel(II) and copper(II) have been synthesized and characterized. The composition of complexes has been established by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as conductivity magnetic susceptibility measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observ
... Show MoreThe Co(II), Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Proline ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using solubility, melting point, conductivity measurement ,. and determination the percentage of the metal in the complexes by flame(AAS).Magnetic susceptibility, Spectroscopic Method [FT-IR and UV-Vis]. Draw the proposed structure of the complexes using program , Chem. office 3D(2006). The ligands and there metal complexes were screened for their antimicrobial activity against four bacteria (gram + ve) and (gram -ve){Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus}.The proposed structure of the complexes using program , Chem office 3D(
... Show MoreMixed ligand complexes of bivalent metal ions, viz ; M= Co(II),Ni(II),Cu(II), Zn(II), Cd (II), and Hg(II) of the composition [M(Anth)2(TMP)] in 1:2:1 molar ratio, (where . AnthrH= Anthranilic acid (C7H7NO2) and Trimethoprime (TMP) = (C14H18N4O3) have been synthesized and characterized by repeated melting point determination, Solubility, Molar conductivity (Λm ),determination the percentage of the metal (M%) in the complexes by (AAS), FT-IR, magnetic susceptibility measurements [μeff (BM)] and electronic spectral data. The two ligands and their metal complexes have been screened for their bacterial activity against selected microbial strains (Gram +ve) & (Gram -ve).
Mixed ligand complexes of bivalent metal ions, viz ; M= Co(II),Ni(II),Cu(II), Zn(II), Cd (II), and Hg(II) of the composition [M(Anth)2(TMP)] in 1:2:1 molar ratio, (where . AnthrH= Anthranilic acid (C7H7NO2) and Trimethoprime (TMP) = (C14H18N4O3) have been synthesized and characterized by repeated melting point determination, Solubility, Molar conductivity (Λm ),determination the percentage of the metal (M%) in the complexes by (AAS), FT-IR, magnetic susceptibility measurements [µeff (BM)] and electronic spectral data. The two ligands and their metal complexes have been screened for their bacterial activity against selected microbial strains (Gram +ve) & (Gram -ve).
The Co(II), Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Proline) and Trimethoprim antibiotic were synthesized. The complexes were characterized using solubility, melting point, conductivity measurement ,. and determination the percentage of the metal in the complexes by flame(AAS).Magnetic susceptibility, Spectroscopic Method [FT-IR and UV-Vis]. Draw the proposed structure of the complexes using program , Chem. office 3D(2006). The ligands and there metal complexes were screened for their antimicrobial activity against four bacteria (gram + ve) and (gram-ve){Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus}.The proposed structure of the complexes using program , Chem office 3D(20
... Show More