Biomedical alloy 316L stainless steel enhancing to replace biological tissue or to help stabilize a biological structure, such as bone tissue, enhancing were coated with deposition a thin layer of silver nanoparticles as anti-bacterial materials by using DC- magnetron sputtering device. The morphology surface of The growth nanostructure under the influence of different working pressure were studied by atomic force microscope. The average grain size decrease but roughness of the silver thin layer was increased with‖ ―increasing the working pressure. The thickness of silver thin layer was increased from 107 nm at 0.08 mbar to 126 nm at 1.1 mbar. Antimicrobial activity of silver thin layers at different working pressure were studied. The results showed that the increasing in working pressure, lead to increase in activity of silver thin coating layer against the bacteria as a result of increasing in thickness and‖ roughness of thin coating layer. This work has been extended to study the anti-bacterial activity were fount the diameters of inhibition zone of gram positive bacteria between 16.5±1.5 and 19±0.5 while the diameters of inhibition zone of gram positive bacteria between 17±1 and 26±1. Finally the measurements of the 316L alloy coated by silver nanocoating layer after immersing the in simulated body fluid (SBF) solution for one month is the XRD pattern for the sample showed obviously that the Hydroxyapatite layer was appeared at (2= 31.8).
The new novel polymers nanocomposites based modified chitosan (CS) blending with polyvinyl alcohol (PVA) and coated gold or silver nanoparticles (AuNPs), AgNPs) were synthesized from many sequence reactions as presented in (Scheme1, 2 and 3). By utilizing 1H-NMR spectroscopy, FTIR, and Field Emission Scanning electron microscope , the synthesized compounds have been identified. Molecular docking is studied, where operations are used to predict the binding status of compounds with the enzyme and to calculate the free energy (ΔG) of the compounds prepared. Also, the antibacterial activity regarding the synthesized compounds against two resistant pathogenic bacteria (G+) S. aureus and E. coli (G-) was examined in vitro compare with standard a
... Show MoreThe antibacterial activity of some extracts of A. eupatoria (aqueous and ethanolic) against some pathogenic bacteria (Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli ) and their activity on wound healing in rats , also the presence of some active compounds in both extracts were detected . The results showed that the ethanolic extract was more effective on inhibiting tested bacteria than the aqueous extract . P.aeruginosa was the most resistant bacteria, while highest inhibition zone appeared on E.coli (20 mm) .There was a moderate activity against S.aureus with inhibition zone 15 mm. by using ethanolic extract (10 mg/ml) . The phytochemical analysis for detection of active compounds revealed the presence of Carbohydrate
... Show MoreThe preliminary test of the compounds N [2– (3,4–dimethoxy nitrobenzene oxazepine– 2,3–dihydro–4,7–dione]–5–mercupto–2–amino–1,3,4–thiadiazol [A] and N [ 2–anthralidene– 5– ( 2–nitrophenyl ) –1,3–oxazepine–4,7–dione–2–d](5–mercapto–1,3,4–thiadiazole–2–amin) [B] , showed that they possess high activity against some positive and negative bacteria , like pseudomonas aeruginosa (pseudo.), Escherichia coli (E-coli), staphylococcus aureus (sta.) and Bacillus subtilis (Ba.) and finally there is a study of the effect of some antibiotics like streptomycin (S), gentamycin (GN), chloramphenicol (C) and Nalitixic acid (NA) in order to compare the differences in effects. In the present study, results
... Show MoreThis study synthesized polyacetal from the reaction of polyvinyl alcohol with para-nitrobenzaldehyde. Polyacetal/polyvinylpyrrolidone polymer blends were prepared using solution casting. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were biosynthesized using onion peel extract as the reducing agent. Nanocomposites were fabricated by blending polyacetal/PVP with AuNPs and AgNPs at different ratios. XRD and FESEM characterized the AuNPs and AgNPs. FTIR, FESEM, TGA, and DSC characterized the polyacetal, polymer blends, and nanocomposites. DSC and TGA confirmed the improved thermal stability of the polymer blends and nanocomposites. Nanocomposites demonstrated higher efficacy in inhibiting lung cancer cell lines compared t
... Show MoreBackground: Nowadays, the environmentally friendly procedures must be developed to avoid using harmful compounds in synthesis methods. Their increase interest in creating and researching silver nanoparticles (AgNPs) because of their numerous applications in many fields especially medical fields such as burn, wound healing, dental and bone implants, antibacterial, viral, fungal, and arthropodal activities. Biosynthesis of nanoparticles mediated pigments have been widely used as antimicrobial agent against microorganisms. Silver nanoparticles had synthesized by using melanin from locally isolate Pseudomonas aeruginosa, and used as antimicrobial activity against pathogenic microorganisms. Aim of the study: Isolation of Pseudomonas aeruginosa
... Show MoreThe Chemistry of heterocyclic sulphur and nitrogen containing compounds have a great role in the field of scientific studies, The 2-amino 5-mercapto-1,3,4-thiadiazole ring for instance, has gained more importance in recent years because they are considered as potent biologically active nucleus. In this study disulfide derivative can be obtained by oxidation with hydrogen peroxide of thiol group of the heterocyclic 2-amino 5-mercapto-1,3,4-thiadiazole ring to obtain compound (3) with expected antibacterial activity. In order to use it as a diazo component to prepare some new bis azo compounds as possible antibacterial agents, the reaction of two primary amino groups on both sides of disulfide dimer with sodium nitr
... Show More