Developing and researching antenna designs are analogous to excavating in an undiscovered mine. This paper proposes a multi-band antenna with a new hexagonal ring shape, theoretically designed, developed, and analyzed using a CST before being manufactured. The antenna has undergone six changes to provide the best performance. The results of the surface current distribution and the electric field distribution on the surface of the hexagonal patch were theoretically analyzed and studied. The sequential approach taken to determine the most effective design is logical, and prevents deviation from the work direction. After comparing the six theoretical results, the fifth model proved to be the best for making a prototype. Measured results represent that the proposed antenna can operate well in three bands with a return loss of -11.24 dB at 2.9 GHz, -25.99 dB at 4.9 GHz, and -21.26 dB at 5.4 GH. This type of antenna belongs to various wireless communication systems, including 2G, 3G, 4G, and 5G.
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreIn this research , design and study a (beam expander) for the Nd – YAG laser with (1.06 ?m) Wavelength has been studied at 5X zoom with narrow diversion in the room temperature. by using (ZEMAX) to study the system. Evaluate its performance via (ZEMAX) outputs, as bright Spot Diagram via (RMS), Ray Fan Plot, Geometric Encircled Energy and the value of Focal shift. Then study the effect of field of view on the outputs in the room temperature.
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that
... Show MoreIn this research, main types of optical coatings are presented which are used as covers for solar cells, these coatings are reflect the infrared (heat) from the solar cell to increase the efficiency of the cell (because the cell’s efficiency is inversely proportional to the heat), then the theoretical and mathematical description of these optical coatings are presented, and an optical design is designed to meet this objective, its optical transmittance was calculated using (MATLAB R2008a) and (Open Filters 1.0.2) programs
The new, standard molecular biologic system for duplicating DNA enzymatically devoid of employing a living organism, like E. coli or yeast, represents polymerases chain reaction (PCR). This technology allows an exponential intensification of a minor quantity of DNA molecule several times. Analysis can be straightforward with more DNA available. A thermal heat cycler performs a polymerization chain reaction that involves repeated cycles of heating and cooling the reactant tubes at the desired temperature for each reaction step. A heated deck is positioned on the upper reaction tube to avoid evaporating the reaction mixture (normally volumes range from 15 to 100 l per tube), or an oil layer can be placed on a reaction mixture su
... Show MoreIn this paper, new transform with fundamental properties are presented. The new transform has many interesting properties and applications which make it rival to other transforms.
Furthermore, we generalize all existing differentiation, integration, and convolution theorems in the existing literature. New results and new shifting theorems are introduced. Finally, comprehensive list of this transforms of functions will be providing.
RMK Al-Zaid, AT Al-Musawi, SJ Mohammad
The new, standard molecular biologic system for duplicating DNA enzymatically devoid of employing a living organism, like E. coli or yeast, represents polymerases chain reaction (PCR). This technology allows an exponential intensification of a minor quantity of DNA molecule several times. Analysis can be straightforward with more DNA available.
A thermal heat cycler performs a polymerization chain reaction that involves repeated cycles of heating and cooling the reactant tubes at the desired temperature for each reaction step. A heated deck is positioned on the upper reaction tube to avoid evaporating the reaction mixture (normally volumes range from 15 to 100 l per tube), or an oil layer can be placed on a reaction mixture surfa
... Show More