Formation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu nanoparticles (A, B, and C) were prepared by exploding wire with different ratio of each elements. A high purity wire with diameters (0.3mm) against plate of these alloys were held at 20V with respect to the wire achieving different currents of 75, 100 and 160 A in distilled water and then the size and a shape of the synthesized alloy nanoparticles modify by pulse laser with different energies, where the colloids of nanoparticles were exposed to one thousand pulses of 532 nm wavelengths per pulse from second harmonic Nd-YAG laser, after it has been focused by a lens with 15 cm focal length. The structural properties were studied using x-ray diffraction. It was found that alloy nanoparticles with crystalline structure identical with face center cubic (fcc) and there is a new phase was appear for the A alloy this phase have the name tetragonal AuCu. It can be concludes that electrical explosion wire in liquid medium (EEW) is promising technique for preparation metal alloy Au-Ag-Cu nanoparticles.
In this work, silicon nitride (Si3N4) thin films were deposited on metallic substrates (aluminium and titanium sheets) by the DC reactive sputtering technique using two different silicon targets (n-type and p-type Si wafers) as well as two Ar:N2 gas mixing ratios (50:50 and 70:30). The electrical conductivity of the metallic (aluminium and titanium) substrates was measured before and after the deposition of silicon nitride thin films on both surfaces of the substrates. The results obtained from this work showed that the deposited films, in general, reduced the electrical conductivity of the substrates, and the thin films prepared from n-type silicon targets using a 50:50 mixing ratio and deposited on both
... Show MoreIn this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering tec
... Show MoreObjective(s): Biocompatibility, non-toxicity, minimal allergenicity, and biodegradability are all characteristics of chitosan. Other biological properties of chitosan have been reported, including antitumor, antimicrobial and antioxidant activities. This research aim is the synthesis of drug compounds by preparation and characterization of polymer chitosan Schiff base and chitosan Schiff base / Poly vinyl alcohol / poly vinyl pyrrolidone Nanocomposite and study applications (anticancer cell line, antimicrobial agents). Methods: Chitosan Schiff base was prepared from the reaction of chitosan with carbonyl group of 4-nitro benzaldehyde. Polymer blend have been prepared by solution casting method. Chitosan Schiff base mixing with PVA and PVP
... Show MoreTo assess the contribution of Doppler broadening and examine the
Compton profile, the Compton energy absorption cross sections are
measured and calculated using formulas based on a relativistic
impulse approximation. The Compton energy-absorption cross
sections are evaluated for different elements (Fe, Zn, Ag, Au and Hg)
and for a photon energy range (1 - 100 keV). With using these crosssections,
the Compton component of the mass–energy absorption
coefficient was derived, where the electron momentum prior to the
scattering event caused a Doppler broadening of the Compton line.
Also, the momentum resolution function was evaluated in terms of
incident and scattered photon energy and scattering angle. The res
Pure Polyaniline salt, and protonation PANI by H2SO4 were synthesized by electro-chemical oxidative polymerization of aniline with acidity of H2SO4. The solution was prepared in reaction temperature equal 291 K and the acidity of aqueous solution was 1 molarities. The prepared polyaniline was characterized by FT-IR, the result indicate that the intensity is increase with increasing of applied voltage. The dc conductivity has been measured for bulk polyaniline pure and doped in the form of compressed pellet with evaporated Ohmic Al electrodes in temperature range (303-423) K. The Eav energy of the thermal rate process of the electrical conductivity was determined. The results indicate that the dc conductivity of doped samples are two or t
... Show MoreThe aim of this work is the synthesis of new Schiff base derived from PVA and Erythro-ascorbic acid derivative (pentulosono-ɣ-lactone-2,3-enedianisoate) and its metal complexes of biological significance. All synthesized compounds were characterized by Thin layer chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR, 13CNMR and mass spectra. The synthesized Schiff base & its metal complexes were screened for their in vitro antimicrobial activity against five pathogenic bacteria (Escherichia coli, Shigella dysentery,Klebsiellapneumonae,Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast).The biological activity ofall complexes is higher than free Schiff base ligand andf
... Show MoreLiquid – liquid interface reaction is the method for
preparation nanoparticles (NP'S) which depend on the super
saturation of ions that provide by using the system that consist from
toluene and water, the first one is above the second to obtain
nanoparticles (NP's) CdS at the interface separated between these
two immiscible liquid. The structure properties were characterized by
XRD-diffraction and transmission electron microscopy.
The crystalline size estimate from X-ray diffraction pattern
using Scherer equation to be about 7nm,and by TEM analysis give us
that ananosize is about 5 nm which give a strong comparable with
Bohr radius. Photoluminescence analysis give two emission peak,
the first one around
The aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transi
... Show More