Preferred Language
Articles
/
ijp-1018
Structural Properties of Prepared PANI/TiO2 Nanocomposite by Chemical Polymerization
...Show More Authors

A progression of Polyaniline (PANI) and Titanium dioxide (TiO2) nanoparticles (NPs) were prepared by an in-situ polymerization strategy within the sight of TiO2 NPs. The subsequent nanocomposites were analyzed using Fourier-transform infrared spectra (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX) taken for the prepared samples. PANI/TiO2 nanocomposites were prepared by various compound materials (with H2SO4 0.3 M and without it, to compare the outcome of it) by the compound oxidation technique using ammonium persulfate (APS) as oxidant within the sight of ultrafine grade powder of TiO2 cooled in an ice bath. Nanocomposites were prepared by the addition of TiO2 with two weight ratios (0.3 and 0.5 wt. %) during the polymerization of PANI. The outcomes showed good collaboration between PANI and TiO2. FTIR spectral shows a shift to higher wave numbers in the peaks of PANI/TiO2 nanocomposites, due to the Coulomb force that resulted from the interaction between the TiO2 nanoparticles with PANI. SEM results show that the TiO2 nanoparticles enwrap the polyaniline and agglomeration of uneven distribution of TiO2 particles can be seen in the PANI matrix. The intensity of the peak in the EDX analyses was found to appear by adding the nanoparticles. XRD pattern of PANI polymerization and PANITNCs shows that the TiO2 NPs and PANI affected the crystallization performance of nanocomposites, it was identified that the TiO2 NPs form a relatively irregular distribution in the PANI chain.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Isochronal Studies of the Structural and Electrical Properties of CdTe Films
...Show More Authors

The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.

View Publication Preview PDF
Crossref
Publication Date
Sat Jul 03 2010
Journal Name
Baghdad Science Journal
Isochronal Studies of the Structural and Electrical Properties of CdTe Films
...Show More Authors

The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.

Publication Date
Wed May 29 2019
Journal Name
Iraqi Journal Of Physics
Effect of thickness on structural properties of BixSb2-xTe3 thin films
...Show More Authors

BixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measureme

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Study the Characterizations of Cement Mortar by Nano Pozzolanic Materials Additions
...Show More Authors

This study involves adding nano materials and interaction with cement mortar behavior for several mortar samples under variable curing time with constant water to cement ratio (W/C = 0.5). The effects of adding nano materials on the microstructure of cement mortar were studied by (Scanning Electronic Microscopy (SEM) and X-Ray (for samples at different curing time 28 and 91 days. Small ratio replacements of nano particles (SiO2 or Al2O3) were added to Ordinary Portland Cement (OPC) type (I). The percentage of nano materials additives replacement by weight of ordinary Portland cement includes (1, 2, 3, 4 and 5%) for both types of nano materials with constant (W/C) ratio, also the amount of the fin

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri May 05 2023
Journal Name
Environmental Science And Pollution Research
Photocatalytic degradation of ciprofloxacin by MMT/CuFe2O4 nanocomposite: characteristics, response surface methodology, and toxicity analyses
...Show More Authors

View Publication
Scopus (37)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Sun Dec 07 2008
Journal Name
Baghdad Science Journal
Prepared (PbS) Thin Film Doped with (Cu) and Study Structure Properties
...Show More Authors

In this research PbS and PbS:Cu films were prepered with thicknesses (0.85±0.05)?m and (0.55±0.5)?m deposit on glass and silicon substrate respectively using chemical spray pyrolysis technique with a substrate temperature 573K, from lead nitrate salt, thiourea and copper chloride. Using XRD we study the structure properties for the undoped and doped films with copper .The analysis reveals that the structure of films were cubic polycrystalline FCC with a preferred orientation along (200) plane for the undoped films and 1% doping with copper but the orientation of (111) plane is preferred with 5% doping with the rest new peaks of films and appeared because of doping. Surface topography using optical microscope were be checked, it was found

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Aip Conference Proceedings
The structural properties of mawsoniteCu6Fe2 S8Sn[CFTS] thin films effected by violet laser irradiation deposited via semi-computerized spray pyrolysis technique
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Performance Estimation of Heat Exchanger Operates By Evaporative Cooling Manner
...Show More Authors

        In this study the design and installation of evaporative air cooler was carried out using completely outdoor air (fresh air) according to two stage evaporative cooling principle. The laboratory equipment was installed by designing and manufacturing a cross flow plate heat exchanger, where aluminum plates used for this purpose with dimensions (50 × 30 × 40 cm). The surfaces of heat exchanger were covered by sawdust from wetted channels side, to increase the percentage of wetting these surfaces and hence improve the performance and efficiency of air cooler.

        An experimental study was carried out to estimate the performance of cooling system, where som

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
The Effect of Etching Time On Structural Properties of Porous Quaternary AlInGaN Thin Films
...Show More Authors

Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Ni2O3 nanomaterial: Synthesis and characterization by simple chemical process
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref