In this study, an efficient photocatalyst for dissociation of water was prepared and studied. The chromium oxide (Cr2O3) with Titanium dioxide (TiO2) nanofibers (Cr2O3-TNFs) nanocomposite with (chitosan extract) were synthesized using ecologically friendly methods such as ultrasonic and hydrothermal techniques; such TiO2 exhibits nanofibers (TNFs) shape structure. Doping TiO2 with chromium (Cr) enhances its ability to absorb ultraviolet light while also speeding up the recombination of photogenerated electrons and holes. The prepared TNFs and Cr2O3-TNFs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and UV-Visible absorbance. The XRD of TNFs showed a tetragonal phase with 6.9 nm of average crystallite size, whereas Cr2O3-TNFs crystallite size was 12.3 nm. FE-SEM images showed that the average particle size of TNFs was in the range of (9-35) nm and UV-Vis absorbance of TNFs showed their energy gap to be 3.9eV while the energy gaps of Cr2O3-TNFs were smaller equal to 2.4 eV. The highest hydrogen production rate for the Cr2O3-TNFs nanocomposite was 4.1ml after 80min of UV exposure. Cr2O3-TNFs have high photocatalytic effectiveness due to their wide ultraviolet light photoresponse range and excellent separation of photogenerated electrons and holes.
Zerumbone (ZER), a natural compound has been extracted from Zingiber zerumbet with known pharmacological activities. The aim was to determine the anti-human Burkitt’s lymphoma (Raji) cell effect of ZER. The 3-(4,5-dimethylthiazol-2-yl)-2,5,-diphenyltetrazolium bromide (MTT) assay was used to determine cytotoxic effect while the Annexin-V-fluorescein isothiocyanate/propidium iodide-PI flow cytometric assays was used to determine apoptotic effect of ZER on the human Burkitt’s lymphoma (Raji) cell (ATCC CCL-86) cell line. The expressions of Bax, Bcl-2, and c-Myc genes were determined via real-time PCR. ZER suppressed the proliferation of Raji cells with a 48 h IC50 value of 5.1 μg/mL. Treated Raji cells also underwen
... Show MoreBased on Lyapunov exponent criterion, the aircraft lateral-directional stability during critical flight cases is presented. A periodic motion or limit cycle oscillation isdisplayed. A candidate mechanism for the wing rock limit cycle is the inertia coupling between an unstable lateral-directional (Dutch roll) mode with stable longitudinal (short period) mode. The coupling mechanism is provided by the nonlinear interaction of motion related terms in the complete set equations of motion. To analyze the state variables of the system, the complete set of nonlinear equations of motion at different high angles of attack are solved. A novel analysis including the variation of roll angle as a function of angle of attack is proposed. Furthermore
... Show MoreThe research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL
In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po
... Show MoreA large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen
... Show MoreRecently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical.
... Show MoreThe physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.
Stripping is one of the major distresses within asphalt concrete pavements caused due to penetration of water within the interface of asphalt-aggregate matrix. In this work, one grade of asphalt cement (40-50) was mixed with variable percentages of three types of additives (fly ash, fumed silica, and phosphogypsum) to obtained an modified asphalt cement to resist the effect of stripping phenomena .The specimens have been tested for physical properties according to AASHTO. The surface free energy has been measured by using two methods namely, the wilhelmy technique and the Sessile drop method according to NCHRP-104
procedures. Samples of asphalt concrete using different asphalt cement and modified asphalt cement percentages(4.1,4.6 an
In recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime
... Show More